Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 949

Full-Text Articles in Physical Sciences and Mathematics

Coupled Metronomes On A Moving Platform With Coulomb Friction, Guillermo H. Goldzstein, Lars Q. English, Emma Behta, Hillel Finder, Alice N. Nadeau, Steven H. Strogatz Jan 2022

Coupled Metronomes On A Moving Platform With Coulomb Friction, Guillermo H. Goldzstein, Lars Q. English, Emma Behta, Hillel Finder, Alice N. Nadeau, Steven H. Strogatz

Faculty and Staff Publications By Year

Using a combination of theory, experiment, and simulation, we revisit the dynamics of two coupled metronomes on a moving platform. Our experiments show that the platform's motion is damped by a dry friction force of Coulomb type, not the viscous linear friction force that has often been assumed in the past. Prompted by this result, we develop a new mathematical model that builds on previously introduced models, but departs from them in its treatment of the friction on the platform. We analyze the model by a two-timescale analysis and derive the slow-flow equations that determine its long-term dynamics. The ...


3-D Printed Arduino Powered Drone, Michael Floccare Jan 2022

3-D Printed Arduino Powered Drone, Michael Floccare

Senior Honors Projects

With the 3D technology available today creating something in a lab has never been easier. Using 3D printers, the body of a drone is created and printed using a combination of programs. With a body created using PLA filament the drone is durable and light weight. The drone’s flight system and controller are programmed with the built-in software from Arduino. Adding the Arduino nano to the drone body then gives the drone capabilities to fly.


Impact Of Proton And Neutron Irradiation On Carrier Transport Properties In Ga2o3, Andrew C. Silverman Jan 2022

Impact Of Proton And Neutron Irradiation On Carrier Transport Properties In Ga2o3, Andrew C. Silverman

Honors Undergraduate Theses

This project studies the properties of minority charge carriers in beta gallium oxide (β -Ga2O3). The behavior of minority carriers is of high importance as it greatly affects conduction and consequently device performance. Cathodoluminescence (CL) spectroscopy and EBIC (Electron Beam Induced Current) are the main experimental techniques used to study minority carrier behavior.

High energy radiation affects minority carrier properties through damage to the material and through the production of carrier traps that reduce the conductivity and mobility of the material. In this investigation, we study the effects of various kinds of high energy radiation on properties ...


Fast Statistical Methods For The Global Qcd Analysis Of The Proton Structure, Xiaoxian Jing Dec 2021

Fast Statistical Methods For The Global Qcd Analysis Of The Proton Structure, Xiaoxian Jing

Physics Theses and Dissertations

Parton distribution functions (PDFs) quantify probabilities to find partons (quarks and gluons) in a hadron as a function of the fraction x of the hadron’s momentum carried by the parton at a given energy scale. PDFs play a critical role in precision tests of the Standard Model in Higgs boson production and other electroweak processes at the Large Hadron Collider (LHC), and in searches for physics beyond the Standard Model. PDFs are obtained by the global QCD analysis, which fits theoretical predictions to experimental measurements. PDF fitting and post-analysis are computationally intensive. This dissertation discusses fast statistical methods for ...


Optimizing Regenerative Braking: A Variational Calculus Approach, Lars Q. English, A. Mareno, Xuan-Lin Chen Nov 2021

Optimizing Regenerative Braking: A Variational Calculus Approach, Lars Q. English, A. Mareno, Xuan-Lin Chen

Faculty and Staff Publications By Year

We begin by analyzing, using basic physics considerations, under what conditions it becomes energetically favorable to use aggressive regenerative braking to reach a lower speed over “coasting” where one relies solely on air drag to slow down. We then proceed to reformulate the question as an optimization problem to find the velocity profile that maximizes battery charge. Making a simplifying assumption on battery-charging efficiency, we express the recovered energy as an integral quantity, and we solve the associated Euler–Lagrange equation to find the optimal braking curves that maximize this quantity in the framework of variational calculus. Using Lagrange multipliers ...


A History Of Physics At Otterbein University, David G. Robertson Sep 2021

A History Of Physics At Otterbein University, David G. Robertson

Faculty Books

This is an informal history of the Physics Department at Otterbein, including the story of the natural sciences prior to the founding of the department in 1908.


Advancement In Infrared Optics Through The Exploration Of Solution Derived Arsenic Selenide (As2se3) Thin Films, Annabella Orsini Jul 2021

Advancement In Infrared Optics Through The Exploration Of Solution Derived Arsenic Selenide (As2se3) Thin Films, Annabella Orsini

Physics and Astronomy Summer Fellows

There are great opportunities for advancement in the realm of infrared (IR) optics through the use of chalcogenide glasses (ChGs). The development of IR optics using ChGs is important for applications in search and rescue operations, firefighting efforts, medical imaging, and satellites. Instead of creating bulky, expensive, single crystal IR glasses, ChGs can be deposited as thin films by solution derived (SD) spin or dip coating. Our research takes a multidisciplinary approach to investigate ChGs thin films using physics, chemistry, optics, and materials science.


54fe(D,P)55fe Single Neutron Transfer Presentation, Matthew Quirin, Raymond Saunders Jul 2021

54fe(D,P)55fe Single Neutron Transfer Presentation, Matthew Quirin, Raymond Saunders

Physics and Astronomy Presentations

During our summer research at the John D Fox Laboratory, we used the 9 MV Tandem van de Graaff accelerator and the Super Enge Split-Pole Spectrograph to make measurements of the neutron transfer reaction 54Fe(d,p) 55Fe to observe and explore excited states of 55Fe and shell structure beyond the magic number N=28. We have created momentum spectra and angular distribution plots of the protons from the reaction which will be analyzed to determine the angular momentum values of states and single-neutron energies in 55Fe in an effort to better understand nuclear structure.


Interactive Physics Display: Air Cannon, Marina Smeltzer, Sydney Hosokawa, Jordan Nguyen, Jessica Ouyang Jun 2021

Interactive Physics Display: Air Cannon, Marina Smeltzer, Sydney Hosokawa, Jordan Nguyen, Jessica Ouyang

Mechanical Engineering

The San Luis Obispo Botanical Garden (SLOBG) is a non-profit organization that provides a place for visitors to connect with and explore nature. The sponsors from SLOBG sought an interactive physics display to be implemented in their children’s garden that will educate children and adult visitors about physics concepts in a welcoming and comfortable atmosphere. The research done showed that customers are looking for a “wow” factor with the display to surprise and engage them. Patents showed the design and build of interactive playground equipment. Government reports described the curriculum for the target audience and also outlined the safety ...


Development And Implementation Of A Pressure-Temperature Control System For The Physical Vapor Deposition Of Copper And Niobium From A Molybdenum Filament In The Development Of Superconducting 3d Printed Rf Cavity Particle Accelerators, Chandler J. Fleuette May 2021

Development And Implementation Of A Pressure-Temperature Control System For The Physical Vapor Deposition Of Copper And Niobium From A Molybdenum Filament In The Development Of Superconducting 3d Printed Rf Cavity Particle Accelerators, Chandler J. Fleuette

Student Research Projects

This report covers the development of the pressure-temperature control system used in the production of small superconducting RF cavities for particle accelerators. To test the validity of the created program, a model for the process was created and tested. The model was used to fine tune the control system before integrating it into the lab. The end goal of the control system is to measure the pressure inside of a deposition vacuum chamber, convert that pressure to a temperature, and use that temperature in tandem with a PID controller to control the current passing though a molybdenum filament which is ...


Fundamental Aspects Of Black Holes, Jacob Fisher Ciafre May 2021

Fundamental Aspects Of Black Holes, Jacob Fisher Ciafre

All Graduate Plan B and other Reports

The literature study here seeks to present the foundations of black hole physics in General Relativity. The report includes a discussion of the Kerr black hole metric, black hole entropy, particle creation, the laws of black hole mechanics, and a bilinear mass formula for the Kerr-Newman black hole solution.


The James Webb Space Telescope And Scientific Progress, Robert Astle Apr 2021

The James Webb Space Telescope And Scientific Progress, Robert Astle

Quest

Independent Research Paper

Research in progress for PHYS 2425: University Physics I

Faculty Mentor: Raji Kannampuzha, Ph.D.

The following paper represents research work done by students in University Physics 2425, the first half of a two-semester introductory course in physics. It is a calculus- based physics course, intended primarily for physics, chemistry, math, and engineering majors. Students are introduced to the concept of academic research by learning to ask research-focused questions and then use the library resources to pursue outside research to find answers. For this assignment, students are asked to investigate a physical science, biological science, or technology ...


Relationship Between Thermal Conductivity And Free Electrons In Metal, Yansong Liu Apr 2021

Relationship Between Thermal Conductivity And Free Electrons In Metal, Yansong Liu

Senior Theses

An experiment was designed and conducted to explore the relationship between thermal conductivity with free electrons in metal. In the experiment, copper, iron, aluminum, and titanium rods with close diameters were used to carry out the experiment. Each rod was heated up by a heat unit at one end while cooled on the other end with a heat sink to maintain a steady state. DC current was applied to rods in the direction along, as well as against, the heat flow. Thermal conductivities were measured in these two situations for each rod. Results showed electrons do dominate thermal flow inside ...


Nb3Sn Coating Of Complex Srf Cavity Structures, Jayendrika Tiskumara, Uttar Pudasaini, Grigory Eremeev, Charlie Reece, Jean Delayen Apr 2021

Nb3Sn Coating Of Complex Srf Cavity Structures, Jayendrika Tiskumara, Uttar Pudasaini, Grigory Eremeev, Charlie Reece, Jean Delayen

College of Sciences Posters

In the modern SRF research, Thin films coated niobium cavities are used for the low cost and increased quality factor. Among the potential thin film materials applied on the niobium, performances demonstrated by the Nb3Sn cavities makes this material attractive for SRF accelerator applications giving higher critical temperature and higher accelerating gradients. While the majority of research efforts are currently focused on the development of elliptical single-cell and multi-cell cavities, the potential of this material is evident to other cavity types, which may have complex geometries. We are working towards the development of Nb3Sn-coated Half-wave resonator and twin ...


Majorana Quasiparticles In Topological Material Interfaces, David Alspaugh Mar 2021

Majorana Quasiparticles In Topological Material Interfaces, David Alspaugh

LSU Doctoral Dissertations

In this dissertation we analyze how Majorana quasiparticles found on material interfaces of both topological insulators (TIs) and topological superconductors (TSCs) are affected by imperfections within their local environment. While these quasiparticles are predicted to be critical for the construction of quantum computers, they are typically modeled only under pristine conditions. Thus, although quantum computers may require the spatial manipulation of Majorana quasiparticles, these topological material interfaces are commonly studied in static contexts and their response to manipulation remains an open question. We first demonstrate that interface potentials on the topological insulator Bi2Se3 can enable the emergence ...


Study Of Neon Collisional Negative Ion Compound Resonance Using A Trochoidal Electron Monochromator, Will Brunner Mar 2021

Study Of Neon Collisional Negative Ion Compound Resonance Using A Trochoidal Electron Monochromator, Will Brunner

Honors Theses, University of Nebraska-Lincoln

This thesis describes the experimental apparatus and procedure used to measure the excitation function of the 2p53p 3D3 state of neon. First I describe the effect on this excitation of negative ion resonances and previous experiments to measure the excitation function, as well as suggestions for future applications of such studies. Then the experimental apparatus is described in three parts. The vacuum system uses a turbomolecular pump to decrease the pressure of the chamber to as low as 4*10-9 Torr. The electron beam system incorporates a trochoidal electron monochromator to send a highly monochromatic ...


Identifying, Analyzing, And Using Discriminatory Variables For Classification Of Neutrino Signal And Background Noise In Multivariate Analysis In The Askaryan Radio Array Experiment, Jesse Osborn Mar 2021

Identifying, Analyzing, And Using Discriminatory Variables For Classification Of Neutrino Signal And Background Noise In Multivariate Analysis In The Askaryan Radio Array Experiment, Jesse Osborn

Honors Theses, University of Nebraska-Lincoln

The Askaryan Radio Array Experiment, located near the South Pole, works to pinpoint specific instances of neutrinos from outside the solar system interacting with nucleons inside the Antarctic ice, emitting radio waves. I have taken data from the ARA stations which is presumed to be background noise and compared it to simulated data meant to look like a neutrino signal. I developed a suite of variables for discrimination between the two data sets, using a computer algorithm to generate a single output variable which can be used to distinguish noise events from signal events. I maximized this discrimination process for ...


The Physics Of Fire By Friction, Bradley D. Duncan Mar 2021

The Physics Of Fire By Friction, Bradley D. Duncan

Electrical and Computer Engineering Faculty Publications

In what follows I will attempt to produce a rigorous, macroscopic, time averaged model of the process of creating fire by friction – up to the point of initial ember formation. I will employ reasonable, practical approximations with the goal of developing mathematical results that are experimentally verifiable. Although force, velocity, pressure and the like are actually vector quantities, due to the symmetry of the problem I will perform a scalar analysis only. Also, to simplify the analysis I will assume that the assortment of variables we will encounter are independent. Mostly this assumption is valid, though on occasion I will ...


Electron Beam Dispersion Compensator Using A Wien Filter, Jackson Lederer Mar 2021

Electron Beam Dispersion Compensator Using A Wien Filter, Jackson Lederer

Honors Theses, University of Nebraska-Lincoln

When an electron beam travels through space, it spreads out over time which impedes the ability to work with short electron pulses in the lab. A Wien filter is a device consisting of perpendicular electric and magnetic fields which filters charged particles based on their velocities. For a specific velocity, the two forces from the two fields in the filter cancel each other out letting charges with that velocity travel straight through the filter. Charges moving at other speeds are deflected as they have a net force applied to them from the filter. If a particle is deflected from the ...


Physics Engine On The Gpu With Opengl Compute Shaders, Quan Huy Minh Bui Mar 2021

Physics Engine On The Gpu With Opengl Compute Shaders, Quan Huy Minh Bui

Master's Theses

Any kind of graphics simulation can be thought of like a fancy flipbook. This notion is, of course, nothing new. For instance, in a game, the central computing unit (CPU) needs to process frame by frame, figuring out what is happening, and then finally issues draw calls to the graphics processing unit (GPU) to render the frame and display it onto the monitor. Traditionally, the CPU has to process a lot of things: from the creation of the window environment for the processed frames to be displayed, handling game logic, processing artificial intelligence (AI) for non-player characters (NPC), to the ...


Aps March Meeting 2021 (Online) Updates On Scientific Research During Pandemic Times, Vianney Gimenez-Pinto Jan 2021

Aps March Meeting 2021 (Online) Updates On Scientific Research During Pandemic Times, Vianney Gimenez-Pinto

Title III Professional Development Reports

While the ongoing global pandemic continues to affect our everyday lives, researchers in Science, Technology, Engineering and Math found a way to come together at the American Physical Society (APS) March Meeting 2021. The conference was online-only and had more than 11,000 registered attendants who actively participated in the program during March 14- 19, 2021.


Dimentia: Footnotes Of Time, Zachary Hait Jan 2021

Dimentia: Footnotes Of Time, Zachary Hait

Senior Projects Spring 2021

Time from the physicist's perspective is not inclusive of our lived experience of time; time from the philosopher's perspective is not mathematically engaged, in fact Henri Bergson asserted explicitly that time could not be mathematically engaged whatsoever. What follows is a mathematical engagement of time that is inclusive of our lived experiences, requiring the tools of storytelling.


Accurate Determination Of The Neutron Skin Thickness Of 208Pb, D. Adhikari, H. Albataineh, D. Androic, F. Hauenstein, M.N.H. Rashad, W. Zhang, J. Zhang, X. Zheng Jan 2021

Accurate Determination Of The Neutron Skin Thickness Of 208Pb, D. Adhikari, H. Albataineh, D. Androic, F. Hauenstein, M.N.H. Rashad, W. Zhang, J. Zhang, X. Zheng

Physics Faculty Publications

We report a precision measurement of the parity-violating asymmetry Apv in the elastic scattering of longitudinally polarized electrons from 208Pb. We measure Apv = 550 ± 16(stat) ± 8(syst) parts per billion, leading to an extraction of the neutral weak form factor Fw (Q2 = 0.00616 GeV2) = 0.368 ± 0.013. Combined with our previous measurement, the extracted neutron skin thickness is Rn - Rp = 0.283 ± 0.071 fm. The result also yields the first significant direct measurement of the interior weak density of 208Pb: ρ0w = -0.0796 ± 0.0036 ...


Finite Different Time-Domain Simulation Of Terahertz Waves Propagation Through Unmagnetized Plasma, Aditha Srikantha Senarath Jan 2021

Finite Different Time-Domain Simulation Of Terahertz Waves Propagation Through Unmagnetized Plasma, Aditha Srikantha Senarath

Browse all Theses and Dissertations

In order to support ongoing terahertz time-domain spectroscopic experiments involving plasma characterization, it is beneficial to simulate the interaction of THz pulses with varying plasma configurations. In this approach, a 1-D Finite Difference Time Domain (FDTD) model was constructed to simulate the interaction of terahertz radiation with a plasma medium. In order to incorporate the plasma properties into the simulation, a Z-transformation was applied. This model is capable of simulating the following properties of plasmas including electron density, collision frequency, and the interaction length of the plasma medium. The simulated model was characterized using terahertz time-domain spectroscopy. The effects of ...


Experimental Tests Of Qcd Scaling Laws At Large Momentum Transfer In Exclusive Light-Meson Photoproduction, Moskov J. Amaryan, William J. Briscoe, Michael G. Ryskin, Igor I. Strakovsky Jan 2021

Experimental Tests Of Qcd Scaling Laws At Large Momentum Transfer In Exclusive Light-Meson Photoproduction, Moskov J. Amaryan, William J. Briscoe, Michael G. Ryskin, Igor I. Strakovsky

Physics Faculty Publications

We evaluated CLAS Collaboration measurements for the 90 meson photoproduction off the nucleon using a tagged photon beam spanning the energy interval s = 3–11 GeV2. The results are compared with the “quark counting rules” predictions.


Observation Of Beam Spin Asymmetries In The Process Ep → E'Π⁺Π⁻ X With Clas 12, T. B. Hayward, C. Dilks, A. Vossen, Dilini Bulumulla, Mohammad Hattawy, Florian Hauenstein, Mariana Khachatryan, Sebastian E. Kuhn, Yelena Prok, B. Yale, N. Zachariou, J. Zhang, Et Al., Clas Collaboration Jan 2021

Observation Of Beam Spin Asymmetries In The Process Ep → E'Π⁺Π⁻ X With Clas 12, T. B. Hayward, C. Dilks, A. Vossen, Dilini Bulumulla, Mohammad Hattawy, Florian Hauenstein, Mariana Khachatryan, Sebastian E. Kuhn, Yelena Prok, B. Yale, N. Zachariou, J. Zhang, Et Al., Clas Collaboration

Physics Faculty Publications

The observation of beam spin asymmetries in two-pion production in semi-inclusive deep inelastic scattering off an unpolarized proton target is reported. The data presented here were taken in the fall of 2018 with the CLAS12 spectrometer using a 10.6 GeV longitudinally spin-polarized electron beam delivered by CEBAF at JLab. The measured asymmetries provide the first opportunity to extract the parton distribution function e(x), which provides information about the interaction between gluons and quarks, in a collinear framework that offers cleaner access than previous measurements. The asymmetries also constitute the first ever signal sensitive to the helicity-dependent two-pion fragmentation ...


Drell-Yan Angular Lepton Distributions At Small X From Tmd Factorization, Ian Balitsky Jan 2021

Drell-Yan Angular Lepton Distributions At Small X From Tmd Factorization, Ian Balitsky

Physics Faculty Publications

The Drell-Yan process is studied in the framework of TMD factorization in the Sudakov region s » Q2 » q2 corresponding to recent LHC experiments with Q2 of order of mass of Z-boson and transverse momentum of DY pair ∼ few tens GeV. The DY hadronic tensors are expressed in terms of quark and quark-gluon TMDs with 1Q2 and 1Nc2 accuracy. It is demonstrated that in the leading order in Nc the higher-twist quark-quark-gluon TMDs reduce to leading-twist TMDs due to QCD equation of motion. The resulting hadronic tensors depend on two leading-twist TMDs: f ...


The Lady Be Good: A Case Study In Radio Frequency Direction Finders, With Supplemental Material For On-Line Appendix, Gregory A. Dilisi, Kenneth Kane, Robert A. Leskovec, Alison Chaney* Jan 2021

The Lady Be Good: A Case Study In Radio Frequency Direction Finders, With Supplemental Material For On-Line Appendix, Gregory A. Dilisi, Kenneth Kane, Robert A. Leskovec, Alison Chaney*

2021 Faculty Bibliography

No abstract provided.


Development And Implementation Of A Pressure-Temperature Control System For The Physical Vapor Deposition Of Copper And Niobium From A Molybdenum Filament In The Development Of Superconducting 3d Printed Rf Cavity Particle Accelerators, Chandler J. Fleuette Jan 2021

Development And Implementation Of A Pressure-Temperature Control System For The Physical Vapor Deposition Of Copper And Niobium From A Molybdenum Filament In The Development Of Superconducting 3d Printed Rf Cavity Particle Accelerators, Chandler J. Fleuette

Honors Theses and Capstones

This report covers the development of the pressure-temperature control system used in the production of small superconducting RF cavities for particle accelerators. To test the validity of the created program, a model for the process was created and tested. The model was used to fine tune the control system before integrating it into the lab. The end goal of the control system is to measure the pressure inside of a deposition vacuum chamber, convert that pressure to a temperature, and use that temperature in tandem with a PID controller to control the current passing though a molybdenum filament which is ...


Drawing Parallels In Art Science For Collaborative Learning: A Case Study, Karen Westland Dec 2020

Drawing Parallels In Art Science For Collaborative Learning: A Case Study, Karen Westland

The STEAM Journal

This research paper explores drawing as a tool to facilitate interdisciplinary practice. Outlined is the personal experience of PhD researcher [name removed] in their physics/craft research project, combined with thoughts and opinions from collaborators gathered through group discursive interviews. Interdisciplinary projects face interpersonal and conceptually ambiguous challenges which can be addressed through adopting drawing techniques for educational purposes. Findings highlight that drawing can assist across a breadth of applications as a learning tool for everyone, regardless of drawing ability, to improve the functionality of collaborative projects. Specifically, drawing combined with other communication techniques develops a performative communicative approach that ...