Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 28 of 28

Full-Text Articles in Physical Sciences and Mathematics

New Physics In The Age Of Precision Cosmology, Vivian I. Sabla Apr 2023

New Physics In The Age Of Precision Cosmology, Vivian I. Sabla

Dartmouth College Ph.D Dissertations

The Lambda-cold dark matter (LCDM) model has become the standard model of cosmology because of its ability to reproduce a vast array of cosmological observations, from the earliest moments of our Universe, to the current period of accelerated expansion, which it does with great accuracy. However, the success of this model only distracts from its inherent flaws and ambiguities. LCDM is purely phenomenological, providing no physical explanation for the nature of dark matter, responsible for the formation and evolution of large-scale structure, and giving an inconclusive explanation for dark energy, which drives the current period of accelerated expansion.

Furthermore, cracks …


Symplectically Integrated Symbolic Regression Of Hamiltonian Dynamical Systems, Daniel Dipietro Jun 2022

Symplectically Integrated Symbolic Regression Of Hamiltonian Dynamical Systems, Daniel Dipietro

Computer Science Senior Theses

Here we present Symplectically Integrated Symbolic Regression (SISR), a novel technique for learning physical governing equations from data. SISR employs a deep symbolic regression approach, using a multi-layer LSTMRNN with mutation to probabilistically sample Hamiltonian symbolic expressions. Using symplectic neural networks, we develop a model-agnostic approach for extracting meaningful physical priors from the data that can be imposed on-the-fly into the RNN output, limiting its search space. Hamiltonians generated by the RNN are optimized and assessed using a fourth-order symplectic integration scheme; prediction performance is used to train the LSTM-RNN to generate increasingly better functions via a risk-seeking policy gradients …


Inflation And The Quantum Measurement Problem, Stephon Alexander, Dhrubo Jyoti, João Magueijo Aug 2016

Inflation And The Quantum Measurement Problem, Stephon Alexander, Dhrubo Jyoti, João Magueijo

Dartmouth Scholarship

We propose a solution to the quantum measurement problem in inflation. Our model treats Fourier modes of cosmological perturbations as analogous to particles in a weakly interacting Bose gas. We generalize the idea of a macroscopic wave function to cosmological fields, and construct a self-interaction Hamiltonian that focuses that wave function. By appropriately setting the coupling between modes, we obtain the standard adiabatic, scale-invariant power spectrum. Because of central limit theorem, we recover a Gaussian random field, consistent with observations.


Effective Microscopic Models For Sympathetic Cooling Of Atomic Gases, Roberto Onofrio, Bala Sundaram Sep 2015

Effective Microscopic Models For Sympathetic Cooling Of Atomic Gases, Roberto Onofrio, Bala Sundaram

Dartmouth Scholarship

Thermalization of a system in the presence of a heat bath has been the subject of many theoretical investigations especially in the framework of solid-state physics. In this setting, the presence of a large bandwidth for the frequency distribution of the harmonic oscillators schematizing the heat bath is crucial, as emphasized in the Caldeira-Leggett model. By contrast, ultracold gases in atomic traps oscillate at well-defined frequencies and therefore seem to lie outside the Caldeira-Leggett paradigm. We introduce interaction Hamiltonians which allow us to adapt the model to an atomic physics framework. The intrinsic nonlinearity of these models differentiates them from …


The Role Of Blowing Snow In The Activation Of Bromine Over First-Year Antarctic Sea Ice, R. M. Lieb-Lappen, R. W. Obbard Jul 2015

The Role Of Blowing Snow In The Activation Of Bromine Over First-Year Antarctic Sea Ice, R. M. Lieb-Lappen, R. W. Obbard

Dartmouth Scholarship

It is well known that during polar springtime halide sea salt ions, in particular Br-, are photochemically activated into reactive halogen species (e.g., Br and BrO), where they break down tropospheric ozone. This research investigated the role of blowing snow in transporting salts from the sea ice/snow surface into reactive bromine species in the air. At two different locations over first-year ice in the Ross Sea, Antarctica, collection baskets captured blowing snow at different heights. In addition, sea ice cores and surface snow samples were collected throughout the month-long campaign. Over this time, sea ice and surface snow …


Dual-Spacecraft Reconstruction Of A Three-Dimensional Magnetic Flux Rope At The Earth's Magnetopause, H. Hasegawa, B. U. Ö. Sonnerup, S. Eriksson, T. K. M. Nakamura Feb 2015

Dual-Spacecraft Reconstruction Of A Three-Dimensional Magnetic Flux Rope At The Earth's Magnetopause, H. Hasegawa, B. U. Ö. Sonnerup, S. Eriksson, T. K. M. Nakamura

Dartmouth Scholarship

We present the first results of a data analysis method, developed by Sonnerup and Hasegawa (2011), for reconstructing three-dimensional (3-D), magnetohydrostatic structures from data taken as two closely spaced satellites traverse the structures. The method is applied to a magnetic flux transfer event (FTE), which was encountered on 27 June 2007 by at least three (TH-C, TH-D, and TH-E) of the five THEMIS probes near the subsolar magnetopause. The FTE was sandwiched between two oppositely directed reconnection jets under a southward interplanetary magnetic field condition, consistent with its generation by multiple X-line reconnection. The recovered 3-D field indicates that a …


Plasma Wave Mediated Attractive Potentials: A Prerequisite For Electron Compound Formation, R. A. Treumann, W. Baumjohann Aug 2014

Plasma Wave Mediated Attractive Potentials: A Prerequisite For Electron Compound Formation, R. A. Treumann, W. Baumjohann

Dartmouth Scholarship

Coagulation of electrons to form macro-electrons or compounds in high temperature plasma is not generally expected to occur. Here we investigate, based on earlier work, the possibility for such electron compound formation (non-quantum "pairing") mediated in the presence of various kinds of plasma waves via the generation of attractive electrostatic potentials, the necessary condition for coagulation. We confirm the possibility of production of attractive potential forces in ion- and electron-acoustic waves, pointing out the importance of the former and expected consequences. While electron-acoustic waves presumably do not play any role, ion-acoustic waves may potentially contribute to formation of heavy electron …


Interferometric Swath Processing Of Cryosat Data For Glacial Ice Topography, L. Gray, D. Burgess, L. Copland, R. Cullen, N. Galin, R. Hawley, V. Helm Dec 2013

Interferometric Swath Processing Of Cryosat Data For Glacial Ice Topography, L. Gray, D. Burgess, L. Copland, R. Cullen, N. Galin, R. Hawley, V. Helm

Dartmouth Scholarship

We have derived digital elevation models (DEMs) over the western part of the Devon Ice Cap in Nunavut, Canada, using "swath processing" of interferometric data collected by Cryosat between February 2011 and January 2012. With the standard ESA (European Space Agency) SARIn (synthetic aperture radar interferometry) level 2 (L2) data product, the interferometric mode is used to map the cross-track position and elevation of the "point-of-closest-approach" (POCA) in sloping glacial terrain. However, in this work we explore the extent to which the phase of the returns in the intermediate L1b product can also be used to map the heights of …


Information-Entropic Stability Bound For Compact Objects: Application To Q-Balls And The Chandrasekhar Limit Of Polytropes, Marcelo Gleiser, Damian Sowinski Nov 2013

Information-Entropic Stability Bound For Compact Objects: Application To Q-Balls And The Chandrasekhar Limit Of Polytropes, Marcelo Gleiser, Damian Sowinski

Dartmouth Scholarship

Spatially-bound objects across diverse length and energy scales are characterized by a binding energy. We propose that their spatial structure is mathematically encoded as information in their momentum modes and described by a measure known as configurational entropy (CE). Investigating solitonic Q-balls and stars with a polytropic equation of state P=Kργ, we show that objects with large binding energy have low CE, whereas those at the brink of instability (zero binding energy) have near maximal CE. In particular, we use the CE to find the critical charge allowing for classically stable Q-balls and the Chandrasekhar limit for white dwarfs (γ=4/3) …


Kinetic Fractionation Of Gases By Deep Air Convection In Polar Firn, K. Kawamura, J. P. Severinghaus, M. R. Albert, Z. R. Courville Nov 2013

Kinetic Fractionation Of Gases By Deep Air Convection In Polar Firn, K. Kawamura, J. P. Severinghaus, M. R. Albert, Z. R. Courville

Dartmouth Scholarship

A previously unrecognized type of gas fractiona- tion occurs in firn air columns subjected to intense convec- tion. It is a form of kinetic fractionation that depends on the fact that different gases have different molecular diffusivi- ties. Convective mixing continually disturbs diffusive equi- librium, and gases diffuse back toward diffusive equilibrium under the influence of gravity and thermal gradients. In near- surface firn where convection and diffusion compete as gas transport mechanisms, slow-diffusing gases such as krypton (Kr) and xenon (Xe) are more heavily impacted by convec- tion than fast diffusing gases such as nitrogen (N2) and ar- gon …


Discontinuities And Alfvenic Fluctuations In The Solar Wind, G. Paschmann, S. Haaland, B. Sonnerup, T. Knetter May 2013

Discontinuities And Alfvenic Fluctuations In The Solar Wind, G. Paschmann, S. Haaland, B. Sonnerup, T. Knetter

Dartmouth Scholarship

We examine the Alfvenicity of a set of 188 solar wind directional discontinuities (DDs) identified in the Cluster data from 2003 by Knetter (2005), with the objective of separating rotational discontinuities (RDs) from tangential ones (TDs). The DDs occurred over the full range of solar wind velocities and magnetic shear angles. By performing the Walen test in the de Hoffmann–Teller (HT) frame, we show that 77 of the 127 crossings for which a good HT frame was found had plasma flow speeds exceeding 80 % of the Alfven speed at an average angular deviation of 7.7◦; 33 cases had speeds …


Intrinsic Rotation Of Toroidally Confined Magnetohydrodynamics, Jorge A. Morales, Wouter J. T. T. Bos, Kai Schneider, David C. Montgomery Oct 2012

Intrinsic Rotation Of Toroidally Confined Magnetohydrodynamics, Jorge A. Morales, Wouter J. T. T. Bos, Kai Schneider, David C. Montgomery

Dartmouth Scholarship

The spatiotemporal self-organization of viscoresistive magnetohydrodynamics in a toroidal geometry is studied. Curl-free toroidal magnetic and electric fields are imposed. It is observed in our simulations that a flow is generated, which evolves from dominantly poloidal to toroidal when the Lundquist numbers are increased. It is shown that this toroidal organization of the flow is consistent with the tendency of the velocity field to align with the magnetic field. Up-down asymmetry of the geometry causes the generation of a nonzero toroidal angular momentum.


Transition In The Fractal Geometry Of Arctic Melt Ponds, C. Hohenegger, B. Alali, K. R. Steffen, D. K. Perovich, K. M. Golden Oct 2012

Transition In The Fractal Geometry Of Arctic Melt Ponds, C. Hohenegger, B. Alali, K. R. Steffen, D. K. Perovich, K. M. Golden

Dartmouth Scholarship

During the Arctic melt season, the sea ice surface undergoes a remarkable transformation from vast expanses of snow covered ice to complex mosaics of ice and melt ponds. Sea ice albedo, a key parameter in climate modeling, is determined by the complex evolution of melt pond configurations. In fact, ice–albedo feedback has played a major role in the recent declines of the summer Arctic sea ice pack. However, understanding melt pond evolution remains a significant challenge to improving climate projections. By analyzing area–perimeter data from hundreds of thousands of melt ponds, we find here an unexpected separation of scales, where …


Decay Of Nuclear Hyperpolarization In Silicon Microparticles, M. Lee, M. C. Cassidy, C. Ramanathan, C. M. Marcus Jul 2011

Decay Of Nuclear Hyperpolarization In Silicon Microparticles, M. Lee, M. C. Cassidy, C. Ramanathan, C. M. Marcus

Dartmouth Scholarship

We investigate the low-field relaxation of nuclear hyperpolarization in undoped and highly doped silicon microparticles at room temperature following removal from high field. For nominally undoped particles, two relaxation time scales are identified for ambient fields above 0.2 mT. The slower, T1,s, is roughly independent of ambient field; the faster, T1,f, decreases with increasing ambient field. A model in which nuclear spin relaxation occurs at the particle surface via a two-electron mechanism is shown to be in good agreement with the experimental data, particularly the field independence of T1,s. For boron-doped particles, a single relaxation time scale is observed. This …


Relativistic Transformation Of Phase-Space Distributions, R A. Treumann, R Nakamura, W Baumjohann Jul 2011

Relativistic Transformation Of Phase-Space Distributions, R A. Treumann, R Nakamura, W Baumjohann

Dartmouth Scholarship

We investigate the transformation of the distri- bution function in the relativistic case, a problem of interest in plasma when particles with high (relativistic) velocities come into play as for instance in radiation belt physics, in the electron-cyclotron maser radiation theory, in the vicin- ity of high-Mach number shocks where particles are acceler- ated to high speeds, and generally in solar and astrophysical plasmas. We show that the phase-space volume element is a Lorentz constant and construct the general particle distri- bution function from first principles. Application to thermal equilibrium lets us derive a modified version of the isotropic relativisticthermaldistribution,themodifiedJu …


A Catalog Of Outer Ejecta Knots In The Cassiopeia A Supernova Remnant, Molly C. Hammell, Robert A. Fesen Nov 2008

A Catalog Of Outer Ejecta Knots In The Cassiopeia A Supernova Remnant, Molly C. Hammell, Robert A. Fesen

Dartmouth Scholarship

Hubble Space Telescope images of the core-collapse supernova remnant Cassiopeia A are used to identify high-velocity knots of ejecta located outside the remnant's main emission shell of expanding debris. These ejecta fragments are found near or ahead of the remnant's forward shock front and mostly lie from 120'' to 300'' in radial distance from the remnant's center of expansion. Filter flux ratios when correlated with published spectra show that these knots can be divided into three emission classes: (1) knots dominated by [N II] λλ6548, 6583 emissions, (2) knots dominated by [O II] λλ7319, 7330 emissions, and (3) …


First Results From Ideal 2-D Mhd Reconstruction: Magnetopause Reconnection Event Seen By Cluster, W. L. Teh, B. U. O. Sonnerup Jan 2008

First Results From Ideal 2-D Mhd Reconstruction: Magnetopause Reconnection Event Seen By Cluster, W. L. Teh, B. U. O. Sonnerup

Dartmouth Scholarship

We have applied a new reconstruction method (Sonnerup and Teh, 2008), based on the ideal single-fluid MHD equations in a steady-state, two-dimensional geometry, to a reconnection event observed by the Cluster-3 (C3) space- craft on 5 July 2001, 06:23 UT, at the dawn-side Northern- Hemisphere magnetopause. The event has been previously studied by use of Grad-Shafranov (GS) reconstruction, per- formed in the deHoffmann-Teller frame, and using the as- sumption that the flow effects were either negligible or the flow was aligned with the magnetic field. Our new method allows the reconstruction to be performed in the frame of reference moving …


Hydrodynamic And Magnetohydrodynamic Computations Inside A Rotating Sphere, P. D. Mininni, D. C. Montgomery, L. Turner Aug 2007

Hydrodynamic And Magnetohydrodynamic Computations Inside A Rotating Sphere, P. D. Mininni, D. C. Montgomery, L. Turner

Dartmouth Scholarship

Numerical solutions of the incompressible magnetohydrodynamic (MHD) equations are reported for the interior of a rotating, perfectly-conducting, rigid spherical shell that is insulator-coated on the inside. A previously-reported spectral method is used which relies on a Galerkin expansion in Chandrasekhar–Kendall vector eigenfunctions of the curl. The new ingredient in this set of computations is the rigid rotation of the sphere. After a few purely hydrodynamic examples are sampled (spin down, Ekman pumping, inertial waves), attention is focused on selective decay and the MHD dynamo problem. In dynamo runs, prescribed mechanical forcing excites a persistent velocity field, usually turbulent at modest …


Small-Scale Structures In Three-Dimensional Magnetohydrodynamic Turbulence, P. D. Mininni, A. G. Pouquet, D. C. Montgomery Dec 2006

Small-Scale Structures In Three-Dimensional Magnetohydrodynamic Turbulence, P. D. Mininni, A. G. Pouquet, D. C. Montgomery

Dartmouth Scholarship

We investigate using direct numerical simulations with grids up to 15363 points, the rate at which small scales develop in a decaying three-dimensional MHD flow both for deterministic and random initial conditions. Parallel current and vorticity sheets form at the same spatial locations, and further destabilize and fold or roll up after an initial exponential phase. At high Reynolds numbers, a self-similar evolution of the current and vorticity maxima is found, in which they grow as a cubic power of time; the flow then reaches a finite dissipation rate independent of the Reynolds number.


Casimir Forces And Non-Newtonian Gravitation, Roberto Onofrio Oct 2006

Casimir Forces And Non-Newtonian Gravitation, Roberto Onofrio

Dartmouth Scholarship

The search for non-relativistic deviations from Newtonian gravitation can lead to new phenomena signalling the unification of gravity with the other fundamental interactions. Various recent theoretical frameworks indicate a possible window for non-Newtonian forces with gravitational coupling strength in the micrometre range. The major expected background in the same range is attributable to the Casimir force or variants of it if dielectric materials, rather than conducting ones, are considered. Here we review the measurements of the Casimir force performed so far in the micrometre range and how they determine constraints on non-Newtonian gravitation, also discussing the dominant sources of false …


Low Magnetic Prandtl Number Dynamos With Helical Forcing, Pablo D. Mininni, David C. Montgomery Nov 2005

Low Magnetic Prandtl Number Dynamos With Helical Forcing, Pablo D. Mininni, David C. Montgomery

Dartmouth Scholarship

We present direct numerical simulations of dynamo action in a forced Roberts flow. The behavior of the dynamo is followed as the mechanical Reynolds number is increased, starting from the laminar case until a turbulent regime is reached. The critical magnetic Reynolds for dynamo action is found, and in the turbulent flow it is observed to be nearly independent on the magnetic Prandtl number in the range from ∼0.3 to ∼0.1. Also the dependence of this threshold with the amount of mechanical helicity in the flow is studied. For the different regimes found, the configuration of the magnetic and velocity …


Limits Of Quintessence, R. R. Caldwell, Eric V. Linder Sep 2005

Limits Of Quintessence, R. R. Caldwell, Eric V. Linder

Dartmouth Scholarship

We present evidence that the simplest particle-physics scalar-field models of dynamical dark energy can be separated into distinct behaviors based on the acceleration or deceleration of the field as it evolves down its potential towards a zero minimum. We show that these models occupy narrow regions in the phase plane of w and w′, the dark energy equation of state and its time derivative in units of the Hubble time. Restricting an energy scale of the dark energy microphysics limits how closely a scalar field can resemble a cosmological constant. These results, indicating a desired measurement resolution of order σ(w′)≈(1+w), …


Objectivity, Information, And Maxwell's Demon, Steven Weinstein Dec 2003

Objectivity, Information, And Maxwell's Demon, Steven Weinstein

Dartmouth Scholarship

This paper examines some common measures of complexity, structure, and information, with an eye toward understanding the extent to which complexity or information‐content may be regarded as objective properties of individual objects. A form of contextual objectivity is proposed which renders the measures objective, and which largely resolves the puzzle of Maxwell's Demon.


Velocity Field Distributions Due To Ideal Line Vortices, Thomas D. Levi, David C. Montgomery Apr 2001

Velocity Field Distributions Due To Ideal Line Vortices, Thomas D. Levi, David C. Montgomery

Dartmouth Scholarship

We evaluate numerically the velocity field distributions produced by a bounded, two-dimensional fluid model consisting of a collection of parallel ideal line vortices. We sample at many spatial points inside a rigid circular boundary. We focus on “nearest-neighbor” contributions that result from vortices that fall (randomly) very close to the spatial points where the velocity is being sampled. We confirm that these events lead to a non-Gaussian high-velocity “tail” on an otherwise Gaussian distribution function for the Eulerian velocity field. We also investigate the behavior of distributions that do not have equilibrium mean-field probability distributions that are uniform inside the …


Long-Lived Localized Field Configurations In Small Lattices: Application To Oscillons, M. Gleiser, A. Sornborger Aug 1999

Long-Lived Localized Field Configurations In Small Lattices: Application To Oscillons, M. Gleiser, A. Sornborger

Dartmouth Scholarship

Long-lived localized field configurations such as breathers, oscillons, or more complex objects naturally arise in the context of a wide range of nonlinear models in different numbers of spatial dimensions. We present a numerical method, which we call the adiabatic damping method, designed to study such configurations in small lattices. Using three-dimensional oscillons in φ4 models as an example, we show that the method accurately (to one part in 105 or better) reproduces results obtained with static or dynamically expanding lattices, dramatically cutting down in integration time. We further present results for two-dimensional oscillons, whose lifetimes would be prohibitively …


A First Principles Warm Inflation Model That Solves The Cosmological Horizon And Flatness Problems, Arjun Berera, Marcelo Gleiser, Rudnei O. Ramos Jul 1999

A First Principles Warm Inflation Model That Solves The Cosmological Horizon And Flatness Problems, Arjun Berera, Marcelo Gleiser, Rudnei O. Ramos

Dartmouth Scholarship

A quantum field theory warm inflation model is presented that solves the horizon and flatness problems. The model obtains, from the elementary dynamics of particle physics, cosmological scale factor trajectories that begin in a radiation dominated regime, enter an inflationary regime, and then smoothly exit back into a radiation dominated regime, with non-negligible radiation throughout the evolution.


Strong Dissipative Behavior In Quantum Field Theory, Arjun Berera, Marcelo Gleiser, Rudnei O. Ramos Nov 1998

Strong Dissipative Behavior In Quantum Field Theory, Arjun Berera, Marcelo Gleiser, Rudnei O. Ramos

Dartmouth Scholarship

We study the conditions under which an overdamped regime can be attained in the dynamic evolution of a quantum field configuration. Using a real-time formulation of finite temperature field theory, we compute the effective evolution equation of a scalar field configuration, quadratically interacting with a given set of other scalar fields. We then show that, in the overdamped regime, the dissipative kernel in the field equation of motion is closely related to the shear viscosity coefficient, as computed in scalar field theory at finite temperature. The effective dynamics is equivalent to a time-dependent Ginzburg-Landau description of the approach to equilibrium …


Oscillons: Resonant Configurations During Bubble Collapse, E J. Copeland, M Gleiser, H R. Müller Jun 1995

Oscillons: Resonant Configurations During Bubble Collapse, E J. Copeland, M Gleiser, H R. Müller

Dartmouth Scholarship

Oscillons are localized, non-singular, time-dependent, spherically-symmetric solutions of nonlinear scalar field theories which, although unstable, are extremely long-lived. We show that they naturally appear during the collapse of subcritical bubbles in models with symmetric and asymmetric double-well potentials. By a combination of analytical and numerical work we explain several of their properties, including the conditions for their existence, their longevity, and their final demise. We discuss several contexts in which we expect oscillons to be relevant. In particular, their nucleation during cosmological phase transitions may have wide-rangingconsequences.