Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Missouri University of Science and Technology

Articles 1 - 9 of 9

Full-Text Articles in Physical Sciences and Mathematics

Dynamical Mechanisms Leading To Equilibration In Two-Component Gases, Stephan De Bievre, Carlos Mejia-Monasterio, Paul Ernest Parris May 2016

Dynamical Mechanisms Leading To Equilibration In Two-Component Gases, Stephan De Bievre, Carlos Mejia-Monasterio, Paul Ernest Parris

Physics Faculty Research & Creative Works

Demonstrating how microscopic dynamics cause large systems to approach thermal equilibrium remains an elusive, longstanding, and actively pursued goal of statistical mechanics. We identify here a dynamical mechanism for thermalization in a general class of two-component dynamical Lorentz gases and prove that each component, even when maintained in a nonequilibrium state itself, can drive the other to a thermal state with a well-defined effective temperature.


Spatio-Temporal Generalization Of The Harris Criterion And Its Application To Diffusive Disorder, Thomas Vojta, Ronald Dickman Mar 2016

Spatio-Temporal Generalization Of The Harris Criterion And Its Application To Diffusive Disorder, Thomas Vojta, Ronald Dickman

Physics Faculty Research & Creative Works

We investigate how a clean continuous phase transition is affected by spatiotemporal disorder, i.e., by an external perturbation that fluctuates in both space and time. We derive a generalization of the Harris criterion for the stability of the clean critical behavior in terms of the space-time correlation function of the external perturbation. As an application, we consider diffusive disorder, i.e., an external perturbation governed by diffusive dynamics, and its effects on a variety of equilibrium and nonequilibrium critical points. We also discuss the relation between diffusive disorder and diffusive dynamical degrees of freedom in the example of model C of …


Strong-Disorder Magnetic Quantum Phase Transitions: Status And New Developments, Thomas Vojta Sep 2014

Strong-Disorder Magnetic Quantum Phase Transitions: Status And New Developments, Thomas Vojta

Physics Faculty Research & Creative Works

This article reviews the unconventional effects of random disorder on magnetic quantum phase transitions, focusing on a number of new experimental and theoretical developments during the last three years. On the theory side, we address smeared quantum phase transitions tuned by changing the chemical composition, for example in alloys of the type A1-xBx. We also discuss how the interplay of order parameter conservation and overdamped dynamics leads to enhanced quantum Griffiths singularities in disordered metallic ferromagnets. Finally, we discuss a semiclassical theory of transport properties in quantum Griffiths phases. Experimental examples include the ruthenates Sr1-x …


Rare Regions And Griffiths Singularities At A Clean Critical Point: The Five-Dimensional Disordered Contact Process, Thomas Vojta, John Igo, José A. Hoyos Jul 2014

Rare Regions And Griffiths Singularities At A Clean Critical Point: The Five-Dimensional Disordered Contact Process, Thomas Vojta, John Igo, José A. Hoyos

Physics Faculty Research & Creative Works

We investigate the nonequilibrium phase transition of the disordered contact process in five space dimensions by means of optimal fluctuation theory and Monte Carlo simulations. We find that the critical behavior is of mean-field type, i.e., identical to that of the clean five-dimensional contact process. It is accompanied by off-critical power-law Griffiths singularities whose dynamical exponent z' saturates at a finite value as the transition is approached. These findings resolve the apparent contradiction between the Harris criterion, which implies that weak disorder is renormalization-group irrelevant, and the rare-region classification, which predicts unconventional behavior. We confirm and illustrate our theory by …


The Structure Of D₂O-Nonane Nanodroplets, Harshad Pathak, Abdalla Obeidat, Gerald Wilemski, Barbara Wyslouzil Jun 2014

The Structure Of D₂O-Nonane Nanodroplets, Harshad Pathak, Abdalla Obeidat, Gerald Wilemski, Barbara Wyslouzil

Physics Faculty Research & Creative Works

We study the internal structure of nanometer-sized D2O-nonane aerosol droplets formed in supersonic nozzle expansions using a variety of experimental techniques including small angle X-ray scattering (SAXS). By fitting the SAXS spectra to a wide range of droplet structure models, we find that the experimental results are inconsistent with mixed droplets that form aqueous core-organic shell structures, but are quite consistent with spherically asymmetric lens-on-sphere structures. The structure that agrees best with the SAXS data and Fourier transform infra-red spectroscopy measurements is that of a nonane lens on a sphere of D2O with a contact angle in the …


Random Fields At A Nonequilibrium Phase Transition, Hatem Barghathi, Thomas Vojta Oct 2012

Random Fields At A Nonequilibrium Phase Transition, Hatem Barghathi, Thomas Vojta

Physics Faculty Research & Creative Works

We study nonequilibrium phase transitions in the presence of disorder that locally breaks the symmetry between two equivalent macroscopic states. In low-dimensional equilibrium systems, such random-field disorder is known to have dramatic effects: it prevents spontaneous symmetry breaking and completely destroys the phase transition. In contrast, we show that the phase transition of the one-dimensional generalized contact process persists in the presence of random-field disorder. The ultraslow dynamics in the symmetry-broken phase is described by a Sinai walk of the domain walls between two different absorbing states. We discuss the generality and limitations of our theory, and we illustrate our …


Directional Limits On Persistent Gravitational Waves Using Ligo S5 Science Data, J. Abadie, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Dec 2011

Directional Limits On Persistent Gravitational Waves Using Ligo S5 Science Data, J. Abadie, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

The gravitational-wave (GW) sky may include nearby pointlike sources as well as stochastic backgrounds. We perform two directional searches for persistent GWs using data from the LIGO S5 science run: one optimized for pointlike sources and one for arbitrary extended sources. Finding no evidence to support the detection of GWs, we present 90% confidence level (C.L.) upper-limit maps of GW strain power with typical values between 2 - 20 x 10-50 strain2 Hz-1 and 5 - 35 x 10-49 strain2Hz-1sr-1 for pointlike and extended sources, respectively. The latter result is the …


Electronic Structure Of Superconducting Mgb₂ And Related Binary And Ternary Borides, Nadezhda I. Medvedeva, Alexander L. Ivanovskii, Julia E. Medvedeva, Arthur J. Freeman Jun 2001

Electronic Structure Of Superconducting Mgb₂ And Related Binary And Ternary Borides, Nadezhda I. Medvedeva, Alexander L. Ivanovskii, Julia E. Medvedeva, Arthur J. Freeman

Physics Faculty Research & Creative Works

First-principles full potential linear muffin-tin orbital-generalized gradient approximation electronic structure calculations of the new medium-Tc superconductor (MTSC) MgB2 and related diborides indicate that superconductivity in these compounds is related to the existence of Px,y-band holes at the γ point. Based on these calculations, we explain the absence of medium-Tc superconductivity for BeB2, AlB2, ScB2, and YB2. The simulation of a number of MgB2-based ternary systems using a supercell approach demonstrates that (i) the electron doping of MgB2 (i.e., MgB2-yXy with X=Be, …


Scaling In One-Dimensional Localized Absorbing Systems, Lev I. Deych, Alexey Yamilov, Alexander A. Lisyansky Jun 2001

Scaling In One-Dimensional Localized Absorbing Systems, Lev I. Deych, Alexey Yamilov, Alexander A. Lisyansky

Physics Faculty Research & Creative Works

Numerical study of the scaling of transmission fluctuations in the one-dimensional localization problem in the presence of absorption is carried out. Violations of single-parameter scaling for lossy systems are found and explained on the basis of a new criterion for different types of scaling behavior derived by Deych et al.