Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Other Physics

Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 45

Full-Text Articles in Physical Sciences and Mathematics

High Powered Rocket Modification, Joshua Gage Apr 2024

High Powered Rocket Modification, Joshua Gage

SACAD: John Heinrichs Scholarly and Creative Activity Days

Rocketry has always been a fun challenge for me. Since not only was I able to learn something new every time I did it, but I was able to do something with my hands as well. One area that has been very challenging for me is how to put a tracker onto a rocket that has no electronics bay. And studying for the L2 Certification tests. And this poster shows my thoughts and process I did to pass my L2 Certification Flight.


Creative Physics Syllabus For Online Class, Kalani Hettiarachchilage Dec 2023

Creative Physics Syllabus For Online Class, Kalani Hettiarachchilage

Open Educational Resources

Creative Physics syllabus for all information and guidelines will be a big help for students to know about the class structure, expectations, submission, personalized class materials, class ethics, and requirements in one place. This detailed syllabus will be a very effective way of expressing the information to the class. Creating a detailed syllabus and engaging activity of in the learning management system such as syllabus review activity will help students to navigate through important items on the syllabus.


Strong Homotopy Lie Algebras And Hypergraphs, Samuel J. Bevins, Marco Aldi Jan 2023

Strong Homotopy Lie Algebras And Hypergraphs, Samuel J. Bevins, Marco Aldi

Undergraduate Research Posters

We study hypergraphs by attaching a nilpotent strong homotopy Lie algebra. We especially focus on hypergraph theoretic information that is encoded in the cohomology of the resulting strong homotopy Lie algebra.


Classification Of Pixel Tracks To Improve Track Reconstruction From Proton-Proton Collisions, Kebur Fantahun, Jobin Joseph, Halle Purdom, Nibhrat Lohia Sep 2022

Classification Of Pixel Tracks To Improve Track Reconstruction From Proton-Proton Collisions, Kebur Fantahun, Jobin Joseph, Halle Purdom, Nibhrat Lohia

SMU Data Science Review

In this paper, machine learning techniques are used to reconstruct particle collision pathways. CERN (Conseil européen pour la recherche nucléaire) uses a massive underground particle collider, called the Large Hadron Collider or LHC, to produce particle collisions at extremely high speeds. There are several layers of detectors in the collider that track the pathways of particles as they collide. The data produced from collisions contains an extraneous amount of background noise, i.e., decays from known particle collisions produce fake signal. Particularly, in the first layer of the detector, the pixel tracker, there is an overwhelming amount of background noise that …


Investigating The Thermodynamics And Seismic Profile Of The Europan Hydrosphere Through Pure-Water Modeling And Saltwater Experiments, Samantha Rosenfeld Jun 2022

Investigating The Thermodynamics And Seismic Profile Of The Europan Hydrosphere Through Pure-Water Modeling And Saltwater Experiments, Samantha Rosenfeld

Honors Theses

We explore the properties of the hydrosphere on Europa involving both a modeling technique and experimental methods. We perform a computational analysis of the thermodynamic properties for an ideal, pure-water Europan ice shell using a Python programming framework called SeaFreeze. We create four models assuming surface temperatures of either 50 K or 140 K and ice shell thicknesses of either 3 km or 30 km. We observe mostly linear trends for the density and seismic wave velocities with respect to depth and find that surface temperature has the greatest effect on the models. Simultaneously, we experimentally investigate the phase diagram …


Dimentia: Footnotes Of Time, Zachary Hait Jan 2021

Dimentia: Footnotes Of Time, Zachary Hait

Senior Projects Spring 2021

Time from the physicist's perspective is not inclusive of our lived experience of time; time from the philosopher's perspective is not mathematically engaged, in fact Henri Bergson asserted explicitly that time could not be mathematically engaged whatsoever. What follows is a mathematical engagement of time that is inclusive of our lived experiences, requiring the tools of storytelling.


Drawing Parallels In Art Science For Collaborative Learning: A Case Study, Karen Westland Dec 2020

Drawing Parallels In Art Science For Collaborative Learning: A Case Study, Karen Westland

The STEAM Journal

This research paper explores drawing as a tool to facilitate interdisciplinary practice. Outlined is the personal experience of PhD researcher [name removed] in their physics/craft research project, combined with thoughts and opinions from collaborators gathered through group discursive interviews. Interdisciplinary projects face interpersonal and conceptually ambiguous challenges which can be addressed through adopting drawing techniques for educational purposes. Findings highlight that drawing can assist across a breadth of applications as a learning tool for everyone, regardless of drawing ability, to improve the functionality of collaborative projects. Specifically, drawing combined with other communication techniques develops a performative communicative approach that enriches …


Learning Assistant And Instructor Communication: Impacts On Perceived Efficacy, Jahangir Rassouli, Laura Ríos Jul 2020

Learning Assistant And Instructor Communication: Impacts On Perceived Efficacy, Jahangir Rassouli, Laura Ríos

Physics

The Learning Assistant (LA) Model was co-developed by Richard McCray and Valerie Otero at the University of Colorado Boulder in 2003. In this model, senior undergraduate students serve as facilitators for group discussion in lower-division courses, and employ evidenced-based practices for promoting inquiry and active learning [1]. Since its inception, the LA model has grown to various departments, disciplines, and universities.

At California Polytechnic State University San Luis Obispo (Cal Poly), the LA program in the physics department is still in its early stages. As such, it is an environment rich for exploration into the affordances, limitations, and benefits of …


Measurements Of Radio Pulse Reception With Stations Of The Ara Experiment Based On The Spicecore Pulser Data Set, Jesse Osborn, Ilya Kravchenko Dr. Apr 2020

Measurements Of Radio Pulse Reception With Stations Of The Ara Experiment Based On The Spicecore Pulser Data Set, Jesse Osborn, Ilya Kravchenko Dr.

UCARE Research Products

The Askaryan Radio Array Experiment located near the South Pole works to pinpoint specific instances of neutrinos from outside the solar system interacting with nucleons inside the Antarctic ice. Neutrinos are a subatomic particle that has nearly no mass and a net neutral charge. As they are, neutrinos tend not to interact with anything as they travel through space which means they can provide us with information about events occurring far from Earth that might not be easily attained through other methods. Neutrinos are known to be emitted from a myriad of sources, including the Sun, the interaction between cosmic …


Characterization Of Magma Storage And Dynamics At Akutan, Semisopochnoi, And Okmok Volcanoes From Analytical And Numerical Models Of Geodetic, Seismic, And Petrologic Data, Kimberly Degrandpre Apr 2020

Characterization Of Magma Storage And Dynamics At Akutan, Semisopochnoi, And Okmok Volcanoes From Analytical And Numerical Models Of Geodetic, Seismic, And Petrologic Data, Kimberly Degrandpre

Earth Sciences Theses and Dissertations

Volcanic eruptions can cause significant socioeconomic loss, but a better understanding of the processes and dynamics influencing the evolution of volcanic plumbing systems will advance the development of eruption forecasting models that will ultimately mitigate hazards and risks associated with eruptive events. Geologic and geophysical data must be integrated in 3D, finite- element, multiphysical, numerical models to define the coupled evolution of magmatic and crustal stress regimes in volcanic environments, but in data limited regions this is not always an option. The remote nature of the Aleutian Island Arc restricts ground-based monitoring and sampling efforts, and due to sparse temporal …


Designing Writing Intensive Upper Division Laboratories In Physics, Sara Callori Feb 2020

Designing Writing Intensive Upper Division Laboratories In Physics, Sara Callori

Q2S Enhancing Pedagogy

California State University San Bernardino is currently transitioning from quarters to semesters, starting in Fall 2020. As part of this transition, the Department of Physics has transformed its curriculum to better suit the needs of its students. One major facet of this redesign has been the creation of two writing intensive, upper division laboratory courses. From a practical standpoint, under the revamped general education program, we are able to incorporate upper division writing into the major. More importantly, there are many benefits where having a writing-intensive major course aligns with program goals and professional organization recommendations. This includes designing activities …


Quantifying Electron Precipitation In The Van Allen Radiation Belts, Timothy Raeder Jan 2020

Quantifying Electron Precipitation In The Van Allen Radiation Belts, Timothy Raeder

Honors Theses and Capstones

The spatial and temporal distribution of high energy electron precipitation from the Van Allen radiation belts is not currently well-understood. The FIREBIRD-II mission (2015-present) and the Van Allen Probes (2012-2019) provide a unique opportunity to examine the behaviors and drivers of high energy electron precipitation. This study quantifies electron precipitation observed by FIREBIRD-II as a function of radial distance (L-shell), magnetic local time (MLT), hemisphere, and geomagnetic indices (Kp). Electron precipitation was observed to peak at L-shell 4.5-5. Regions of elevated electron precipitation were identified at L-shell 4-6 at dawn (MLT 6-9) and dusk (MLT 15-21). Hemisphere filtering indicated very …


New Methodologies For Examining And Supporting Student Reasoning In Physics, John C. Speirs May 2019

New Methodologies For Examining And Supporting Student Reasoning In Physics, John C. Speirs

Electronic Theses and Dissertations

Learning how to reason productively is an essential goal of an undergraduate education in any STEM-related discipline. Many non-physics STEM majors are required to take introductory physics as part of their undergraduate programs. While certain physics concepts and principles may be of use to these students in their future academic careers and beyond, many will not. Rather, it is often expected that the most valuable and longlasting learning outcomes from a physics course will be a repertoire of problem-solving strategies, a familiarity with mathematizing real-world situations, and the development of a strong set of qualitative inferential reasoning skills.

For more …


Practical Chaos: Using Dynamical Systems To Encrypt Audio And Visual Data, Julia Ruiter Jan 2019

Practical Chaos: Using Dynamical Systems To Encrypt Audio And Visual Data, Julia Ruiter

Scripps Senior Theses

Although dynamical systems have a multitude of classical uses in physics and applied mathematics, new research in theoretical computer science shows that dynamical systems can also be used as a highly secure method of encrypting data. Properties of Lorenz and similar systems of equations yield chaotic outputs that are good at masking the underlying data both physically and mathematically. This paper aims to show how Lorenz systems may be used to encrypt text and image data, as well as provide a framework for how physical mechanisms may be built using these properties to transmit encrypted wave signals.


Announcement: In Memory Of Yong Ho Chin, Michael Thoennessen, Debbie Brodbar, Brant Johnson, Jean Delayen, Dan Kulp, Frank Zimmermann, Maria Poko Jan 2019

Announcement: In Memory Of Yong Ho Chin, Michael Thoennessen, Debbie Brodbar, Brant Johnson, Jean Delayen, Dan Kulp, Frank Zimmermann, Maria Poko

Physics Faculty Publications

No abstract provided.


Three Dimensional Passive Localization For Single Path Arrival With Unknown Starting Conditions, Britt Aguda Aug 2018

Three Dimensional Passive Localization For Single Path Arrival With Unknown Starting Conditions, Britt Aguda

University of New Orleans Theses and Dissertations

Introduced in this paper is the time difference of arrival (TDoA) conic approximation method (TCAM), a technique for passive localization in three dimensions with unknown starting conditions. The TDoA of a mutually detected signal across pairs of detectors is used to calculate the relative angle between the signal source and the center point of the separation between the detectors in the pair. The relative angle is calculated from the TDoA using a mathematical model called the TDoA approximation of the zenith angle (TAZA). The TAZA angle defines the opening angle of a conic region of probability that contains the signal …


Light, Electricity And Semiconductors, Josephine Zhao Jun 2018

Light, Electricity And Semiconductors, Josephine Zhao

The International Student Science Fair 2018

No abstract provided.


An Analysis Of Frenkel Defects And Backgrounds Modeling For Supercdms Dark Matter Searches, Matthew Stein May 2018

An Analysis Of Frenkel Defects And Backgrounds Modeling For Supercdms Dark Matter Searches, Matthew Stein

Physics Theses and Dissertations

Years of astrophysical observations suggest that dark matter comprises more than ~80 % of all matter in the universe. Particle physics theories favor a weakly-interacting particle that could be directly detected in terrestrial experiments. The Super Cryogenic Dark Matter Search (SuperCDMS) Collaboration operates world-leading experiments to directly detect dark matter interacting with ordinary matter. The SuperCDMS Soudan experiment searched for weakly interacting massive particles (WIMPs) via their elastic-scattering interactions with nuclei in low-temperature germanium detectors.

During the operation of the SuperCDMS Soudan experiment, 210Pb sources were installed to study background rejection of the Ge detectors. Data from these sources …


Investigating Student Understanding Of Vector Calculus In Upper-Division Electricity And Magnetism: Construction And Determination Of Differential Element In Non-Cartesian Coordinate Systems, Benjamin Schermerhorn May 2018

Investigating Student Understanding Of Vector Calculus In Upper-Division Electricity And Magnetism: Construction And Determination Of Differential Element In Non-Cartesian Coordinate Systems, Benjamin Schermerhorn

Electronic Theses and Dissertations

Differential length, area, and volume elements appear ubiquitously over the course of upper-division electricity and magnetism (E&M), used to sum the effects of or determine expressions for electric or magnetic fields. Given the plethora of tasks with spherical and cylindrical symmetry, non-Cartesian coordinates are commonly used, which include scaling factors as coefficients for the differential terms to account for the curvature of space. Furthermore, the application to vector fields means differential lengths and areas are vector quantities. So far, little of the education research in E&M has explored student understanding and construction of the non-Cartesian differential elements used in applications …


Underwater Acoustic Signal Analysis Toolkit, Kirk Bienvenu Jr Dec 2017

Underwater Acoustic Signal Analysis Toolkit, Kirk Bienvenu Jr

University of New Orleans Theses and Dissertations

This project started early in the summer of 2016 when it became evident there was a need for an effective and efficient signal analysis toolkit for the Littoral Acoustic Demonstration Center Gulf Ecological Monitoring and Modeling (LADC-GEMM) Research Consortium. LADC-GEMM collected underwater acoustic data in the northern Gulf of Mexico during the summer of 2015 using Environmental Acoustic Recording Systems (EARS) buoys. Much of the visualization of data was handled through short scripts and executed through terminal commands, each time requiring the data to be loaded into memory and parameters to be fed through arguments. The vision was to develop …


Nuclear Magnetic Resonance Studies Of Electrode And Electrolyte Materials For Li-Ion Batteries, Lisa Cirrincione Sep 2017

Nuclear Magnetic Resonance Studies Of Electrode And Electrolyte Materials For Li-Ion Batteries, Lisa Cirrincione

Dissertations, Theses, and Capstone Projects

In this thesis, Nuclear Magnetic Resonance (NMR) spectroscopic techniques are used to study lithium electrode and electrolyte materials for advanced rechargeable lithium ion batteries. Three projects are described in this thesis. The first involves 23Na and 37Al static and magic angle spinning NMR studies of NaAlH4/C anode materials for advanced rechargeable batteries. The second project is a study of paramagnetic lithium transition-metal phosphate cathode materials for Li-ion batteries, where 7Li, and 31P single crystal NMR was used in order to obtain detailed information on the local electronic and magnetic environments. The third project investigates …


The Interactions Of Relationships, Interest, And Self-Efficacy In Undergraduate Physics, Remy Dou Mar 2017

The Interactions Of Relationships, Interest, And Self-Efficacy In Undergraduate Physics, Remy Dou

FIU Electronic Theses and Dissertations

This collected papers dissertation explores students’ academic interactions in an active learning, introductory physics settings as they relate to the development of physics self-efficacy and interest. The motivation for this work extends from the national call to increase participation of students in the pursuit of science, technology, engineering, and mathematics (STEM) careers. Self-efficacy and interest are factors that play prominent roles in popular, evidence-based, career theories, including the Social cognitive career theory (SCCT) and the identity framework. Understanding how these constructs develop in light of the most pervasive characteristic of the active learning introductory physics classroom (i.e., peer-to-peer interactions) has …


Laboratory Model Of Magnetic Frictionless Flywheel And Hoverboard, Angel J. Gutarra-Leon, Vincent Cordrey, Walerian Majewski Feb 2017

Laboratory Model Of Magnetic Frictionless Flywheel And Hoverboard, Angel J. Gutarra-Leon, Vincent Cordrey, Walerian Majewski

Exigence

We constructed a ring Halbach array of strong NdBeB grade 52 arc-segment magnets, with magnetizations chosen to create a one-sided magnet with the field magnified on the flat side. We investigated a repulsive axial levitating forces and associated circumferential drag forces acting on an assembly of inductors suspended above the rotating array. After measuring induced currents, voltages and magnetic fields in the individual inductors (in the form of short solenoids) of our induction wheels, we investigated the dependence of lift/drag forces on the speed of relative rotation of magnets and inductors. The ratio of lift to drag increases uniformly with …


Radiation Reaction: Or How I Learned To Stop Worrying And Love E&M, Alexander R. Kaufman Jan 2017

Radiation Reaction: Or How I Learned To Stop Worrying And Love E&M, Alexander R. Kaufman

Summer Research

Here we present some approaches to understanding the Abraham-Lotentz-Dirac equation and their features. And a behavior found in numerical solutions to the 1-dimensional ALD in a co-moving reference frame for a single charged particle in a Coulombic field.


The Acoustics Of Harmon Mutes, Zachary T. Armstrong Jan 2016

The Acoustics Of Harmon Mutes, Zachary T. Armstrong

Summer Research

The acoustic properties of trumpets have been studied thoroughly, but little to no previous work has been done regarding the acoustics of trumpet mutes. Harmon mutes have a distinctively "buzzy" sound when they are used in performance and it is the opinion of a large number of trumpet players who use Harmon mutes that they should be dented before they are used in performance. The work presented here is an attempt to determine the acoustical properties of Harmon mutes and how they change when the mute is dented. If Harmon mutes are better understood, then a more informed decision as …


Vibrational Patterns In Curved Metal Plates, Samuel D. Berling Jan 2016

Vibrational Patterns In Curved Metal Plates, Samuel D. Berling

Summer Research

This summer, I investigated the factors affecting the vibrational patterns of curved metal plates. This research was inspired by the musical saw instrument which is played by bending a large handsaw into an s-curve and then bowing it like a violin. In our results, we identified the local confinement of the vibrational patterns due to the plate's curvature, the variation of resonant frequencies due to the geometry of the plate, and we determined that the stress in the metal created by bending the plate into its shape has a negligible effect on the resonant frequencies.


Supersymmetry And The Tunneling Problem In An Asymmetric Double Well, Asim Gangopadhyaya, Prasanta Panigrahi, Uday Sukhatne Dec 2015

Supersymmetry And The Tunneling Problem In An Asymmetric Double Well, Asim Gangopadhyaya, Prasanta Panigrahi, Uday Sukhatne

Asim Gangopadhyaya

The techniques of supersymmetric quantum mechanics are applied to the calculation of the energy difference between the ground state and the first excited state of an asymmetric double well. This splitting, originating from the tunneling effect, is computed via a systematic, rapidly converging perturbation expansion. Perturbative calculations to any order can be easily carried out using a logarithmic perturbation theory. Our approach yield substantially better results than alternative widely used semiclassical analyses.


Models Of Time Travel And Their Consequences, Antonio M. Mantica Jun 2015

Models Of Time Travel And Their Consequences, Antonio M. Mantica

Oglethorpe Journal of Undergraduate Research

How do we travel through time? We know that we can move forward in it (we have no choice), but can we jump forward in time? Can we go backward in time? It also gives rise to other troubling questions: is time measurable in distinct increments, or does it flow continuously? In "Models of Time Travel and their Consequences," Antonio Mantica walks the reader through current understandings of how time functions in Einstein's universe and proposes three distinct models to explain it. Following that, he provides a list of experiments to credit or discredit the models. Appropriate for audiences of …


Investigating The Proposed Affordances And Limitations Of The Substance Metaphor For Energy, Lisa Goodhew Jun 2014

Investigating The Proposed Affordances And Limitations Of The Substance Metaphor For Energy, Lisa Goodhew

Honors Projects

This study explores the instructional advantages and disadvantages of representing energy as a material substance; this is done in the context of a computer simulation that illustrates processes of energy transfer and transformation. These affordances and limitations have been proposed in science education literature as extensions of the substance metaphor itself, but there is little empirical evidence to support them. This study is intended to provide preliminary empirical evidence for these affordances and limitations. We examine data from eight interviews conducted with students from Seattle Pacific University’s introductory physics classes as they used the simulation. We explore the hypotheses that …


Exploring The Relationship Between A Fluid Container's Geometry And When It Will Balance On Edge, Ryan J. Moriarty Jun 2014

Exploring The Relationship Between A Fluid Container's Geometry And When It Will Balance On Edge, Ryan J. Moriarty

Physics

At some point while consuming a beverage, many people will idly try to balance its container on edge. The act itself is physically straightforward, merely involving the system's center of mass and achieving a static equilibrium between the opposing torques caused by gravity and the normal force between the container and the surface on which it balances. Further analysis of the act, however, illuminates the richness of the exercise.

These nuances are apparent even in simplified two-dimensional models because of the depth of the relationship between a container's geometry and achieving balance. The purpose of such analysis is threefold: first, …