Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Celia A. Schiffer

Discipline
Keyword
Publication Year
File Type

Articles 91 - 115 of 115

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Decomposing The Energetic Impact Of Drug Resistant Mutations In Hiv-1 Protease On Binding Drv, Yufeng Cai, Celia Schiffer Nov 2011

Decomposing The Energetic Impact Of Drug Resistant Mutations In Hiv-1 Protease On Binding Drv, Yufeng Cai, Celia Schiffer

Celia A. Schiffer

Darunavir (DRV) is a high affinity (4.5x10(-12) M, DeltaG = -15.2 kcal/mol) HIV-1 protease inhibitor. Two drug-resistant protease variants FLAP+ (L10I, G48V, I54V, V82A) and ACT (V82T, I84V) decrease the binding affinity with DRV by 1.0 kcal/mol and 1.6 kcal/mol respectively. In this study the absolute and relative binding free energies of DRV with wild-type protease, FLAP+ and ACT were calculated with MM-PB/GBSA and thermodynamic integration methods, respectively. Free energy decomposition elucidated that the mutations conferred resistance by distorting the active site of HIV-1 protease so that the residues that lost binding free energy were not limited to the sites …


Replacement Of The P1 Amino Acid Of Human Immunodeficiency Virus Type 1 Gag Processing Sites Can Inhibit Or Enhance The Rate Of Cleavage By The Viral Protease, Steve Pettit, Gavin Henderson, Celia Schiffer, Ronald Swanstrom Nov 2011

Replacement Of The P1 Amino Acid Of Human Immunodeficiency Virus Type 1 Gag Processing Sites Can Inhibit Or Enhance The Rate Of Cleavage By The Viral Protease, Steve Pettit, Gavin Henderson, Celia Schiffer, Ronald Swanstrom

Celia A. Schiffer

Processing of the human immunodeficiency virus type 1 (HIV-1) Gag precursor is highly regulated, with differential rates of cleavage at the five major processing sites to give characteristic processing intermediates. We examined the role of the P1 amino acid in determining the rate of cleavage at each of these five sites by using libraries of mutants generated by site-directed mutagenesis. Between 12 and 17 substitution mutants were tested at each P1 position in Gag, using recombinant HIV-1 protease (PR) in an in vitro processing reaction of radiolabeled Gag substrate. There were three sites in Gag (MA/CA, CA/p2, NC/p1) where one …


Hiv-1 Protease Inhibitors From Inverse Design In The Substrate Envelope Exhibit Subnanomolar Binding To Drug-Resistant Variants, Michael Altman, Akbar Ali, G. S. Kiran Kumar Reddy, Madhavi Nalam, Saima Anjum, Hong Cao, Sripriya Chellappan, Visvaldas Kairys, Miguel Fernandes, Michael Gilson, Celia Schiffer, Tariq Rana, Bruce Tidor Nov 2011

Hiv-1 Protease Inhibitors From Inverse Design In The Substrate Envelope Exhibit Subnanomolar Binding To Drug-Resistant Variants, Michael Altman, Akbar Ali, G. S. Kiran Kumar Reddy, Madhavi Nalam, Saima Anjum, Hong Cao, Sripriya Chellappan, Visvaldas Kairys, Miguel Fernandes, Michael Gilson, Celia Schiffer, Tariq Rana, Bruce Tidor

Celia A. Schiffer

The acquisition of drug-resistant mutations by infectious pathogens remains a pressing health concern, and the development of strategies to combat this threat is a priority. Here we have applied a general strategy, inverse design using the substrate envelope, to develop inhibitors of HIV-1 protease. Structure-based computation was used to design inhibitors predicted to stay within a consensus substrate volume in the binding site. Two rounds of design, synthesis, experimental testing, and structural analysis were carried out, resulting in a total of 51 compounds. Improvements in design methodology led to a roughly 1000-fold affinity enhancement to a wild-type protease for the …


The Effect Of Clade-Specific Sequence Polymorphisms On Hiv-1 Protease Activity And Inhibitor Resistance Pathways, Rajintha Bandaranayake, Madhavi Kolli, Nancy King, Ellen Nalivaika, Annie Heroux, Junko Kakizawa, Wataru Sugiura, Celia Schiffer Nov 2011

The Effect Of Clade-Specific Sequence Polymorphisms On Hiv-1 Protease Activity And Inhibitor Resistance Pathways, Rajintha Bandaranayake, Madhavi Kolli, Nancy King, Ellen Nalivaika, Annie Heroux, Junko Kakizawa, Wataru Sugiura, Celia Schiffer

Celia A. Schiffer

The majority of HIV-1 infections around the world result from non-B clade HIV-1 strains. The CRF01_AE (AE) strain is seen principally in Southeast Asia. AE protease differs by approximately 10% in amino acid sequence from clade B protease and carries several naturally occurring polymorphisms that are associated with drug resistance in clade B. AE protease has been observed to develop resistance through a nonactive-site N88S mutation in response to nelfinavir (NFV) therapy, whereas clade B protease develops both the active-site mutation D30N and the nonactive-site mutation N88D. Structural and biochemical studies were carried out with wild-type and NFV-resistant clade B …


Lack Of Synergy For Inhibitors Targeting A Multi-Drug-Resistant Hiv-1 Protease, Nancy King, Laurence Melnick, Moses Prabu-Jeyabalan, Ellen Nalivaika, Shiow-Shong Yang, Yun Gao, Xiaoyi Nie, Charles Zepp, Donald Heefner, Celia Schiffer Nov 2011

Lack Of Synergy For Inhibitors Targeting A Multi-Drug-Resistant Hiv-1 Protease, Nancy King, Laurence Melnick, Moses Prabu-Jeyabalan, Ellen Nalivaika, Shiow-Shong Yang, Yun Gao, Xiaoyi Nie, Charles Zepp, Donald Heefner, Celia Schiffer

Celia A. Schiffer

The three-dimensional structures of indinavir and three newly synthesized indinavir analogs in complex with a multi-drug-resistant variant (L63P, V82T, I84V) of HIV-1 protease were determined to approximately 2.2 A resolution. Two of the three analogs have only a single modification of indinavir, and their binding affinities to the variant HIV-1 protease are enhanced over that of indinavir. However, when both modifications were combined into a single compound, the binding affinity to the protease variant was reduced. On close examination, the structural rearrangements in the protease that occur in the tightest binding inhibitor complex are mutually exclusive with the structural rearrangements …


Prediction Of Homologous Protein Structures Based On Conformational Searches And Energetics, Celia Schiffer, James Caldwell, Peter Kollman, Robert Stroud Nov 2011

Prediction Of Homologous Protein Structures Based On Conformational Searches And Energetics, Celia Schiffer, James Caldwell, Peter Kollman, Robert Stroud

Celia A. Schiffer

A "knowledge-based" method of predicting the unknown structure of a protein from a homologous known structure using energetics to determine a sidechain conformation is proposed. The method consists of exchanging the residues in the known structure for the sequence of the unknown protein. Then a conformational search with molecular mechanics energy minimization is done on the exchanged residues. The lowest energy conformer is the one picked to be the predicted structure. In the structure of bovine trypsin, the importance of including a solvation energy term in the search is demonstrated for solvent accessible residues, while molecular mechanics alone is enough …


Crystallization Of Human Thymidylate Synthase, Celia Schiffer, V. Jo Davisson, Daniel Santi, Robert Stroud Nov 2011

Crystallization Of Human Thymidylate Synthase, Celia Schiffer, V. Jo Davisson, Daniel Santi, Robert Stroud

Celia A. Schiffer

Human thymidylate synthase has been crystallized in the absence of ligands and diffracts beyond 3.0 A. The protein was cloned and expressed in Escherichia coli and then crystallized from ammonium sulfate in the presence of beta-mercaptoethanol at a variety of pH values. The crystals are trigonal in the space-group P3(1)21; the unit cell dimensions are a = b = 96.7 A, c = 84.1 A.


Human Immunodeficiency Virus Type 1 Protease-Correlated Cleavage Site Mutations Enhance Inhibitor Resistance, Madhavi Kolli, Eric Stawiski, Colombe Chappey, Celia Schiffer Nov 2011

Human Immunodeficiency Virus Type 1 Protease-Correlated Cleavage Site Mutations Enhance Inhibitor Resistance, Madhavi Kolli, Eric Stawiski, Colombe Chappey, Celia Schiffer

Celia A. Schiffer

Drug resistance is an important cause of antiretroviral therapy failure in human immunodeficiency virus (HIV)-infected patients. Mutations in the protease render the virus resistant to protease inhibitors (PIs). Gag cleavage sites also mutate, sometimes correlating with resistance mutations in the protease, but their contribution to resistance has not been systematically analyzed. The present study examines mutations in Gag cleavage sites that associate with protease mutations and the impact of these associations on drug susceptibilities. Significant associations were observed between mutations in the nucleocapsid-p1 (NC-p1) and p1-p6 cleavage sites and various PI resistance-associated mutations in the protease. Several patterns were frequently …


Three Residues In Hiv-1 Matrix Contribute To Protease Inhibitor Susceptibility And Replication Capacity, Chris Parry, Madhavi Kolli, Richard Myers, Patricia Cane, Celia Schiffer, Deenan Pillay Nov 2011

Three Residues In Hiv-1 Matrix Contribute To Protease Inhibitor Susceptibility And Replication Capacity, Chris Parry, Madhavi Kolli, Richard Myers, Patricia Cane, Celia Schiffer, Deenan Pillay

Celia A. Schiffer

Other than cleavage site mutations, there is little data on specific positions within Gag that impact on HIV protease inhibitor susceptibility. We have recently shown that non-cleavage site mutations in gag, particularly within matrix protein can restore replication capacity and further reduce protease inhibitor drug susceptibility when coexpressed with a drug-resistant (mutant) protease. The matrix protein of this patient-derived virus was studied in order to identify specific changes responsible for this phenotype. Three amino acid changes in matrix (R76K, Y79F, and T81A) had an impact on replication capacity as well as drug susceptibility. Introduction of these three changes into wild-type …


Discovery And Selection Of Tmc114, A Next Generation Hiv-1 Protease Inhibitor, Dominique Surleraux, Abdellah Tahri, Wim Verschueren, Geert Pille, Herman De Kock, Tim Jonckers, Anik Peeters, Sandra De Meyer, Hilde Azijn, Rudi Pauwels, Marie-Pierre De Bethune, Nancy King, Moses Prabu-Jeyabalan, Celia Schiffer, Piet Wigerinck Nov 2011

Discovery And Selection Of Tmc114, A Next Generation Hiv-1 Protease Inhibitor, Dominique Surleraux, Abdellah Tahri, Wim Verschueren, Geert Pille, Herman De Kock, Tim Jonckers, Anik Peeters, Sandra De Meyer, Hilde Azijn, Rudi Pauwels, Marie-Pierre De Bethune, Nancy King, Moses Prabu-Jeyabalan, Celia Schiffer, Piet Wigerinck

Celia A. Schiffer

The screening of known HIV-1 protease inhibitors against a panel of multi-drug-resistant viruses revealed the potent activity of TMC126 on drug-resistant mutants. In comparison to amprenavir, the improved affinity of TMC126 is largely the result of one extra hydrogen bond to the backbone of the protein in the P2 pocket. Modification of the substitution pattern on the phenylsulfonamide P2' substituent of TMC126 created an interesting SAR, with the close analogue TMC114 being found to have a similar antiviral activity against the mutant and the wild-type viruses. X-ray and thermodynamic studies on both wild-type and mutant enzymes showed an extremely high …


Structure-Based Design, Synthesis, And Structure-Activity Relationship Studies Of Hiv-1 Protease Inhibitors Incorporating Phenyloxazolidinones, Akbar Ali, G. S. Kiran Kumar Reddy, Madhavi Nalam, Saima Anjum, Hong Cao, Celia Schiffer, Tariq Rana Nov 2011

Structure-Based Design, Synthesis, And Structure-Activity Relationship Studies Of Hiv-1 Protease Inhibitors Incorporating Phenyloxazolidinones, Akbar Ali, G. S. Kiran Kumar Reddy, Madhavi Nalam, Saima Anjum, Hong Cao, Celia Schiffer, Tariq Rana

Celia A. Schiffer

A series of new HIV-1 protease inhibitors with the hydroxyethylamine core and different phenyloxazolidinone P2 ligands were designed and synthesized. Variation of phenyl substitutions at the P2 and P2' moieties significantly affected the binding affinity and antiviral potency of the inhibitors. In general, compounds with 2- and 4-substituted phenyloxazolidinones at P2 exhibited lower binding affinities than 3-substituted analogues. Crystal structure analyses of ligand-enzyme complexes revealed different binding modes for 2- and 3-substituted P2 moieties in the protease S2 binding pocket, which may explain their different binding affinities. Several compounds with 3-substituted P2 moieties demonstrated picomolar binding affinity and low nanomolar …


Accessibility And Order Of Water Sites In And Around Proteins: A Crystallographic Time-Averaging Study, Celia Schiffer, Wilfred Van Gunsteren Nov 2011

Accessibility And Order Of Water Sites In And Around Proteins: A Crystallographic Time-Averaging Study, Celia Schiffer, Wilfred Van Gunsteren

Celia A. Schiffer

Water plays an essential role in most biological processes. Water molecules solvating biomolecules are generally in fast exchange with the environment. Nevertheless, well-defined electron density is seen for water associated with proteins whose crystal structure is determined to high resolution. The relative accessibility of these water sites is likely to be relevant to their biological role but is difficult to assess. A time-averaging crystallographic refinement simulation on basic pancreatic trypsin inhibitor successfully characterizes the relative accessibility of the crystallographic water sites. In such a refinement simulation water diffuses through the crystal lattice in a manner that is consistent with the …


Structure-Based Prediction Of Potential Binding And Nonbinding Peptides To Hiv-1 Protease, Nese Kurt, Turkan Haliloglu, Celia Schiffer Nov 2011

Structure-Based Prediction Of Potential Binding And Nonbinding Peptides To Hiv-1 Protease, Nese Kurt, Turkan Haliloglu, Celia Schiffer

Celia A. Schiffer

HIV-1 protease is a major drug target against AIDS as it permits viral maturation by processing the gag and pol polyproteins of the virus. The cleavage sites in these polyproteins do not have obvious sequence homology or a binding motif and the specificity of the protease is not easily determined. We used various threading approaches, together with the crystal structures of substrate complexes which served as template structures, to study the substrate specificity of HIV-1 protease with the aim of obtaining a better differentiation between binding and nonbinding sequences. The predictions from threading improved when distance-dependent interaction energy functions were …


Promise Of Advances In Simulation Methods For Protein Crystallography: Implicit Solvent Models, Time-Averaging Refinement, And Quantum Mechanical Modeling, Celia Schiffer, Jan Hermans Nov 2011

Promise Of Advances In Simulation Methods For Protein Crystallography: Implicit Solvent Models, Time-Averaging Refinement, And Quantum Mechanical Modeling, Celia Schiffer, Jan Hermans

Celia A. Schiffer

No abstract provided.


Competition Between Ski And Creb-Binding Protein For Binding To Smad Proteins In Transforming Growth Factor-Beta Signaling, Weijun Chen, Suvana Lam, Hema Srinath, Celia Schiffer, William Royer, Kai Lin Nov 2011

Competition Between Ski And Creb-Binding Protein For Binding To Smad Proteins In Transforming Growth Factor-Beta Signaling, Weijun Chen, Suvana Lam, Hema Srinath, Celia Schiffer, William Royer, Kai Lin

Celia A. Schiffer

The family of Smad proteins mediates transforming growth factor-beta (TGF-beta) signaling in cell growth and differentiation. Smads repress or activate TGF-beta signaling by interacting with corepressors (e.g. Ski) or coactivators (e.g. CREB-binding protein (CBP)), respectively. Specifically, Ski has been shown to interfere with the interaction between Smad3 and CBP. However, it is unclear whether Ski competes with CBP for binding to Smads and whether they can interact with Smad3 at the same binding surface on Smad3. We investigated the interactions among purified constructs of Smad, Ski, and CBP in vitro by size-exclusion chromatography, isothermal titration calorimetry, and mutational studies. Here, …


Mass Spectrometry Analysis Of Hiv-1 Vif Reveals An Increase In Ordered Structure Upon Oligomerization In Regions Necessary For Viral Infectivity, Jared Auclair, Karin Green, Shivender Shandilya, James Evans, Mohan Somasundaran, Celia Schiffer Nov 2011

Mass Spectrometry Analysis Of Hiv-1 Vif Reveals An Increase In Ordered Structure Upon Oligomerization In Regions Necessary For Viral Infectivity, Jared Auclair, Karin Green, Shivender Shandilya, James Evans, Mohan Somasundaran, Celia Schiffer

Celia A. Schiffer

HIV-1 Vif, an accessory protein in the viral genome, performs an important role in viral pathogenesis by facilitating the degradation of APOBEC3G, an endogenous cellular inhibitor of HIV-1 replication. In this study, intrinsically disordered regions are predicted in HIV-1 Vif using sequence-based algorithms. Intrinsic disorder may explain why traditional structure determination of HIV-1 Vif has been elusive, making structure-based drug design impossible. To characterize HIV-1 Vif's structural topology and to map the domains involved in oligomerization we used chemical cross-linking, proteolysis, and mass spectrometry. Cross-linking showed evidence of monomer, dimer, and trimer species via denaturing gel analysis and an additional …


Viral Protease Inhibitors, Jeffrey Anderson, Celia Schiffer, Sook-Kyung Lee, Ronald Swanstrom Nov 2011

Viral Protease Inhibitors, Jeffrey Anderson, Celia Schiffer, Sook-Kyung Lee, Ronald Swanstrom

Celia A. Schiffer

This review provides an overview of the development of viral protease inhibitors as antiviral drugs. We concentrate on HIV-1 protease inhibitors, as these have made the most significant advances in the recent past. Thus, we discuss the biochemistry of HIV-1 protease, inhibitor development, clinical use of inhibitors, and evolution of resistance. Since many different viruses encode essential proteases, it is possible to envision the development of a potent protease inhibitor for other viruses if the processing site sequence and the catalytic mechanism are known. At this time, interest in developing inhibitors is limited to viruses that cause chronic disease, viruses …


Mutation Patterns And Structural Correlates In Human Immunodeficiency Virus Type 1 Protease Following Different Protease Inhibitor Treatments, Thomas Wu, Celia Schiffer, Matthew Gonzales, Jonathan Taylor, Rami Kantor, Sunwen Chou, Dennis Israelski, Andrew Zolopa, W. Jeffrey Fessel, Robert Shafer Nov 2011

Mutation Patterns And Structural Correlates In Human Immunodeficiency Virus Type 1 Protease Following Different Protease Inhibitor Treatments, Thomas Wu, Celia Schiffer, Matthew Gonzales, Jonathan Taylor, Rami Kantor, Sunwen Chou, Dennis Israelski, Andrew Zolopa, W. Jeffrey Fessel, Robert Shafer

Celia A. Schiffer

Although many human immunodeficiency virus type 1 (HIV-1)-infected persons are treated with multiple protease inhibitors in combination or in succession, mutation patterns of protease isolates from these persons have not been characterized. We collected and analyzed 2,244 subtype B HIV-1 isolates from 1,919 persons with different protease inhibitor experiences: 1,004 isolates from untreated persons, 637 isolates from persons who received one protease inhibitor, and 603 isolates from persons receiving two or more protease inhibitors. The median number of protease mutations per isolate increased from 4 in untreated persons to 12 in persons who had received four or more protease inhibitors. …


Curling Of Flap Tips In Hiv-1 Protease As A Mechanism For Substrate Entry And Tolerance Of Drug Resistance, Walter Scott, Celia Schiffer Nov 2011

Curling Of Flap Tips In Hiv-1 Protease As A Mechanism For Substrate Entry And Tolerance Of Drug Resistance, Walter Scott, Celia Schiffer

Celia A. Schiffer

BACKGROUND: The human immunodeficiency virus type 1 (HIV-1) protease is an essential viral protein that is a major drug target in the fight against Acquired Immune Deficiency Syndrome (AIDS). Access to the active site of this homodimeric enzyme is gained when two large flaps, one from each monomer, open. The flap movements are therefore central to the function of the enzyme, yet determining how these flaps move at an atomic level has not been experimentally possible.

RESULTS: In the present study, we observe the flaps of HIV-1 protease completely opening during a 10 ns solvated molecular dynamics simulation starting from …


Exploring The Role Of The Solvent In The Denaturation Of A Protein: A Molecular Dynamics Study Of The Dna Binding Domain Of The 434 Repressor, Celia Schiffer, Volker Dötsch, Kurt Wuthrich, Wilfred Van Gunsteren Nov 2011

Exploring The Role Of The Solvent In The Denaturation Of A Protein: A Molecular Dynamics Study Of The Dna Binding Domain Of The 434 Repressor, Celia Schiffer, Volker Dötsch, Kurt Wuthrich, Wilfred Van Gunsteren

Celia A. Schiffer

Molecular dynamics simulations of the DNA binding domain of 434 repressor are presented which aim at unraveling the role of solvent in protein denaturation. Four altered solvent models, each mimicking various possible aspects of the addition of a denaturant to the aqueous solvent, were used in the simulations to analyze their effects on the stability of the protein. The solvent was altered by selectively changing the Coulombic interaction between water and protein atoms and between different water molecules. The use of a modified solvent model has the advantage of mimicking the presence of denaturant without having denaturant molecules present in …


Resilience To Resistance Of Hiv-1 Protease Inhibitors: Profile Of Darunavir, Eric Lefebvre, Celia A. Schiffer Nov 2011

Resilience To Resistance Of Hiv-1 Protease Inhibitors: Profile Of Darunavir, Eric Lefebvre, Celia A. Schiffer

Celia A. Schiffer

The current effectiveness of HAART in the management of HIV infection is compromised by the emergence of extensively cross-resistant strains of HIV-1, requiring a significant need for new therapeutic agents. Due to its crucial role in viral maturation and therefore HIV-1 replication and infectivity, the HIV-1 protease continues to be a major development target for antiretroviral therapy. However, new protease inhibitors must have higher thresholds to the development of resistance and cross-resistance. Research has demonstrated that the binding characteristics between a protease inhibitor and the active site of the HIV-1 protease are key factors in the development of resistance. More …


Structural Analysis Of Human Immunodeficiency Virus Type 1 Crf01_Ae Protease In Complex With The Substrate P1-P6., Rajintha Bandaranayake, Moses Prabu-Jeyabalan, Junko Kakizawa, Wataru Sugiura, Celia Schiffer Nov 2011

Structural Analysis Of Human Immunodeficiency Virus Type 1 Crf01_Ae Protease In Complex With The Substrate P1-P6., Rajintha Bandaranayake, Moses Prabu-Jeyabalan, Junko Kakizawa, Wataru Sugiura, Celia Schiffer

Celia A. Schiffer

The effect of amino acid variability between human immunodeficiency virus type 1 (HIV-1) clades on structure and the emergence of resistance mutations in HIV-1 protease has become an area of significant interest in recent years. We determined the first crystal structure of the HIV-1 CRF01_AE protease in complex with the p1-p6 substrate to a resolution of 2.8 A. Hydrogen bonding between the flap hinge and the protease core regions shows significant structural rearrangements in CRF01_AE protease compared to the clade B protease structure.


Combating Drug Resistance – Identifying Resilient Molecular Targets And Robust Drugs, Celia Schiffer Dec 2007

Combating Drug Resistance – Identifying Resilient Molecular Targets And Robust Drugs, Celia Schiffer

Celia A. Schiffer

In: Robert M. Stroud and Janet Finer-Moore, Computational and Structural Approaches to Drug Discovery: Ligand-Protein Interactions, Royal Society of Chemistry, 2008, Chapter 7, p. 127-132. ISBN 0854043659, 9780854043651.


The Role Of Molecular Recognition In Activation And Regulation In The Growth Hormone-Prolactin Family Of Hormones And Receptors, Anthony Kossiakoff, Celia Schiffer, Abraham De Vos Dec 1996

The Role Of Molecular Recognition In Activation And Regulation In The Growth Hormone-Prolactin Family Of Hormones And Receptors, Anthony Kossiakoff, Celia Schiffer, Abraham De Vos

Celia A. Schiffer

In: Rick L. Ornstein, Biomacromolecules--from 3-D to applications: Thirty-fourth Hanford Symposium on Health and the Environment, October 23-26, 1995, Pasco, Washington, U.S.A. Battelle Press, 1997, p. 123-131. ISBN 1574770195, 9781574770193.


Time-Averaging Crystallographic Refinement, Celia Schiffer Dec 1996

Time-Averaging Crystallographic Refinement, Celia Schiffer

Celia A. Schiffer

In: Wilfred F. van Gunsteren and Paul K. Weiner, Computer Simulation of Biomolecular Systems: Theoretical and Experimental Applications (Volume 3 of Computer Simulation of Biomolecular Systems), Springer, 1997, p. 265-269. ISBN 9072199251, 9789072199256.

Full text of chapter is available through Google Book Search limited preview: Google Book Search description