Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Celia A. Schiffer

Molecular Dynamics Simulation

Articles 1 - 5 of 5

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Quantitative Comparison Of Errors In 15n Transverse Relaxation Rates Measured Using Various Cpmg Phasing Schemes, Wazo Myint, Yufeng Cai, Celia Schiffer, Rieko Ishima Oct 2012

Quantitative Comparison Of Errors In 15n Transverse Relaxation Rates Measured Using Various Cpmg Phasing Schemes, Wazo Myint, Yufeng Cai, Celia Schiffer, Rieko Ishima

Celia A. Schiffer

Nitrogen-15 Carr-Purcell-Meiboom-Gill (CPMG) transverse relaxation experiment are widely used to characterize protein backbone dynamics and chemical exchange parameters. Although an accurate value of the transverse relaxation rate, R(2), is needed for accurate characterization of dynamics, the uncertainty in the R(2) value depends on the experimental settings and the details of the data analysis itself. Here, we present an analysis of the impact of CPMG pulse phase alternation on the accuracy of the (15)N CPMG R(2). Our simulations show that R(2) can be obtained accurately for a relatively wide spectral width, either using the conventional phase cycle or using phase alternation …


Decomposing The Energetic Impact Of Drug-Resistant Mutations: The Example Of Hiv-1 Protease-Drv Binding, Yufeng Cai, Celia Schiffer Oct 2012

Decomposing The Energetic Impact Of Drug-Resistant Mutations: The Example Of Hiv-1 Protease-Drv Binding, Yufeng Cai, Celia Schiffer

Celia A. Schiffer

HIV-1 protease is a major drug target for AIDS therapy. With the appearance of drug-resistant HIV-1 protease variants, understanding the mechanism of drug resistance becomes critical for rational drug design. Computational methods can provide more details about inhibitor-protease binding than crystallography and isothermal titration calorimetry. The latest FDA-approved HIV-1 protease inhibitor is Darunavir (DRV). Herein, each DRV atom is evaluated by free energy component analysis for its contribution to the binding affinity with wild-type protease and ACT, a drug-resistant variant. This information can contribute to the rational design of new HIV-1 protease inhibitors.


Hydrophobic Core Flexibility Modulates Enzyme Activity In Hiv-1 Protease, Seema Mittal, Yufeng Cai, Madhavi Nalam, Daniel Bolon, Celia Schiffer Oct 2012

Hydrophobic Core Flexibility Modulates Enzyme Activity In Hiv-1 Protease, Seema Mittal, Yufeng Cai, Madhavi Nalam, Daniel Bolon, Celia Schiffer

Celia A. Schiffer

Human immunodeficiency virus Type-1 (HIV-1) protease is crucial for viral maturation and infectivity. Studies of protease dynamics suggest that the rearrangement of the hydrophobic core is essential for enzyme activity. Many mutations in the hydrophobic core are also associated with drug resistance and may modulate the core flexibility. To test the role of flexibility in protease activity, pairs of cysteines were introduced at the interfaces of flexible regions remote from the active site. Disulfide bond formation was confirmed by crystal structures and by alkylation of free cysteines and mass spectrometry. Oxidized and reduced crystal structures of these variants show the …


Investigations Of Peptide Hydration Using Nmr And Molecular Dynamics Simulations: A Study Of Effects Of Water On The Conformation And Dynamics Of Antamanide, Jeffrey Peng, Celia Schiffer, Ping Xu, Wilfred Van Gunsteren, Richard Ernst Nov 2011

Investigations Of Peptide Hydration Using Nmr And Molecular Dynamics Simulations: A Study Of Effects Of Water On The Conformation And Dynamics Of Antamanide, Jeffrey Peng, Celia Schiffer, Ping Xu, Wilfred Van Gunsteren, Richard Ernst

Celia A. Schiffer

The influence of water binding on the conformational dynamics of the cyclic decapeptide antamanide dissolved in the model lipophilic environment chloroform is investigated by NMR relaxation measurements. The water-peptide complex has a lifetime of 35 mgrs at 250 K, which is longer than typical lifetimes of water-peptide complexes reported in aqueous solution. In addition, there is a rapid intracomplex mobility that probably involves librational motions of the bound water or water molecules hopping between different binding sites. Water binding restricts the flexibility of antamanide. The experimental findings are compared with GROMOS molecular dynamics simulations of antamanide with up to eight …


Dynamics Of Preferential Substrate Recognition In Hiv-1 Protease: Redefining The Substrate Envelope, Aysegul Ozen, Turkan Haliloglu, Celia Schiffer Nov 2011

Dynamics Of Preferential Substrate Recognition In Hiv-1 Protease: Redefining The Substrate Envelope, Aysegul Ozen, Turkan Haliloglu, Celia Schiffer

Celia A. Schiffer

Human immunodeficiency virus type 1 (HIV-1) protease (PR) permits viral maturation by processing the gag and gag-pro-pol polyproteins. HIV-1 PR inhibitors (PIs) are used in combination antiviral therapy but the emergence of drug resistance has limited their efficacy. The rapid evolution of HIV-1 necessitates consideration of drug resistance in novel drug design. Drug-resistant HIV-1 PR variants no longer inhibited efficiently, continue to hydrolyze the natural viral substrates. Though highly diverse in sequence, the HIV-1 PR substrates bind in a conserved three-dimensional shape we termed the substrate envelope. Earlier, we showed that resistance mutations arise where PIs protrude beyond the substrate …