Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Structural And Thermodynamic Basis Of Amprenavir/Darunavir And Atazanavir Resistance In Hiv-1 Protease With Mutations At Residue 50, Seema Mittal, Rajintha Bandaranayake, Nancy King, Moses Prabu-Jeyabalan, Madhavi Nalam, Ellen Nalivaika, Nese Yilmaz, Celia Schiffer Jul 2013

Structural And Thermodynamic Basis Of Amprenavir/Darunavir And Atazanavir Resistance In Hiv-1 Protease With Mutations At Residue 50, Seema Mittal, Rajintha Bandaranayake, Nancy King, Moses Prabu-Jeyabalan, Madhavi Nalam, Ellen Nalivaika, Nese Yilmaz, Celia Schiffer

Celia A. Schiffer

Drug resistance occurs through a series of subtle changes that maintain substrate recognition but no longer permit inhibitor binding. In HIV-1 protease, mutations at I50 are associated with such subtle changes that confer differential resistance to specific inhibitors. Residue I50 is located at the protease flap tips, closing the active site upon ligand binding. Under selective drug pressure, I50V/L substitutions emerge in patients, compromising drug susceptibility and leading to treatment failure. The I50V substitution is often associated with amprenavir (APV) and darunavir (DRV) resistance, while the I50L substitution is observed in patients failing atazanavir (ATV) therapy. To explain how APV, …


Decomposing The Energetic Impact Of Drug-Resistant Mutations: The Example Of Hiv-1 Protease-Drv Binding, Yufeng Cai, Celia Schiffer Oct 2012

Decomposing The Energetic Impact Of Drug-Resistant Mutations: The Example Of Hiv-1 Protease-Drv Binding, Yufeng Cai, Celia Schiffer

Celia A. Schiffer

HIV-1 protease is a major drug target for AIDS therapy. With the appearance of drug-resistant HIV-1 protease variants, understanding the mechanism of drug resistance becomes critical for rational drug design. Computational methods can provide more details about inhibitor-protease binding than crystallography and isothermal titration calorimetry. The latest FDA-approved HIV-1 protease inhibitor is Darunavir (DRV). Herein, each DRV atom is evaluated by free energy component analysis for its contribution to the binding affinity with wild-type protease and ACT, a drug-resistant variant. This information can contribute to the rational design of new HIV-1 protease inhibitors.


Accounting For Molecular Mobility In Structure Determination Based On Nuclear Magnetic Resonance Spectroscopic And X-Ray Diffraction Data, Wilfred Van Gunsteren, Roger Brunne, P. Gros, René Van Schaik, Celia Schiffer, Andrew Torda Nov 2011

Accounting For Molecular Mobility In Structure Determination Based On Nuclear Magnetic Resonance Spectroscopic And X-Ray Diffraction Data, Wilfred Van Gunsteren, Roger Brunne, P. Gros, René Van Schaik, Celia Schiffer, Andrew Torda

Celia A. Schiffer

No abstract provided.


Insights Into Interferon Regulatory Factor Activation From The Crystal Structure Of Dimeric Irf5, Weijun Chen, Suvana Lam, Hema Srinath, Zhaozhao Jiang, John Correia, Celia Schiffer, Katherine Fitzgerald, Kai Lin, William Royer Nov 2011

Insights Into Interferon Regulatory Factor Activation From The Crystal Structure Of Dimeric Irf5, Weijun Chen, Suvana Lam, Hema Srinath, Zhaozhao Jiang, John Correia, Celia Schiffer, Katherine Fitzgerald, Kai Lin, William Royer

Celia A. Schiffer

Interferon regulatory factors (IRFs) are essential in the innate immune response and other physiological processes. Activation of these proteins in the cytoplasm is triggered by phosphorylation of serine and threonine residues in a C-terminal autoinhibitory region, which stimulates dimerization, transport into the nucleus, assembly with the coactivator CBP/p300 and initiation of transcription. The crystal structure of the transactivation domain of pseudophosphorylated human IRF5 strikingly reveals a dimer in which the bulk of intersubunit interactions involve a highly extended C-terminal region. The corresponding region has previously been shown to block CBP/p300 binding to unphosphorylated IRF3. Mutation of key interface residues supports …


Inclusion Of Solvation Free Energy With Molecular Mechanics Energy: Alanyl Dipeptide As A Test Case, Celia Schiffer, James Caldwell, Robert Stroud, Peter Kollman Nov 2011

Inclusion Of Solvation Free Energy With Molecular Mechanics Energy: Alanyl Dipeptide As A Test Case, Celia Schiffer, James Caldwell, Robert Stroud, Peter Kollman

Celia A. Schiffer

A combined force field of molecular mechanics and solvation free energy is tested by carrying out energy minimization and molecular dynamics on several conformations of the alanyl dipeptide. Our results are qualitatively consistent with previous experimental and computational studies, in that the addition of solvation energy stabilizes the C5 conformation of the alanyl dipeptide relative to the C7.


Design Of Hiv-1 Protease Inhibitors Active On Multidrug-Resistant Virus, Dominique Surleraux, Herman De Kock, Wim Verschueren, Geert Pille, Louis Maes, Anik Peeters, Sandrine Vendeville, Sandra De Meyer, Hilde Azijn, Rudi Pauwels, Marie-Pierre De Bethune, Nancy King, Moses Prabu-Jeyabalan, Celia Schiffer, Piet Wigerinck Nov 2011

Design Of Hiv-1 Protease Inhibitors Active On Multidrug-Resistant Virus, Dominique Surleraux, Herman De Kock, Wim Verschueren, Geert Pille, Louis Maes, Anik Peeters, Sandrine Vendeville, Sandra De Meyer, Hilde Azijn, Rudi Pauwels, Marie-Pierre De Bethune, Nancy King, Moses Prabu-Jeyabalan, Celia Schiffer, Piet Wigerinck

Celia A. Schiffer

On the basis of structural data gathered during our ongoing HIV-1 protease inhibitors program, from which our clinical candidate TMC114 9 was selected, we have discovered new series of fused heteroaromatic sulfonamides. The further extension into the P2' region was aimed at identifying new classes of compounds with an improved broad spectrum activity and acceptable pharmacokinetic properties. Several of these compounds display an exceptional broad spectrum activity against a panel of highly cross-resistant mutants. Certain members of these series exhibit favorable pharmacokinetic profiles in rat and dog. Crystal structures and molecular modeling were used to rationalize the broad spectrum profile …


Computational Design And Experimental Study Of Tighter Binding Peptides To An Inactivated Mutant Of Hiv-1 Protease, Michael Altman, Ellen Nalivaika, Moses Prabu-Jeyabalan, Celia Schiffer, Bruce Tidor Nov 2011

Computational Design And Experimental Study Of Tighter Binding Peptides To An Inactivated Mutant Of Hiv-1 Protease, Michael Altman, Ellen Nalivaika, Moses Prabu-Jeyabalan, Celia Schiffer, Bruce Tidor

Celia A. Schiffer

Drug resistance in HIV-1 protease, a barrier to effective treatment, is generally caused by mutations in the enzyme that disrupt inhibitor binding but still allow for substrate processing. Structural studies with mutant, inactive enzyme, have provided detailed information regarding how the substrates bind to the protease yet avoid resistance mutations; insights obtained inform the development of next generation therapeutics. Although structures have been obtained of complexes between substrate peptide and inactivated (D25N) protease, thermodynamic studies of peptide binding have been challenging due to low affinity. Peptides that bind tighter to the inactivated protease than the natural substrates would be valuable …


The Effect Of Clade-Specific Sequence Polymorphisms On Hiv-1 Protease Activity And Inhibitor Resistance Pathways, Rajintha Bandaranayake, Madhavi Kolli, Nancy King, Ellen Nalivaika, Annie Heroux, Junko Kakizawa, Wataru Sugiura, Celia Schiffer Nov 2011

The Effect Of Clade-Specific Sequence Polymorphisms On Hiv-1 Protease Activity And Inhibitor Resistance Pathways, Rajintha Bandaranayake, Madhavi Kolli, Nancy King, Ellen Nalivaika, Annie Heroux, Junko Kakizawa, Wataru Sugiura, Celia Schiffer

Celia A. Schiffer

The majority of HIV-1 infections around the world result from non-B clade HIV-1 strains. The CRF01_AE (AE) strain is seen principally in Southeast Asia. AE protease differs by approximately 10% in amino acid sequence from clade B protease and carries several naturally occurring polymorphisms that are associated with drug resistance in clade B. AE protease has been observed to develop resistance through a nonactive-site N88S mutation in response to nelfinavir (NFV) therapy, whereas clade B protease develops both the active-site mutation D30N and the nonactive-site mutation N88D. Structural and biochemical studies were carried out with wild-type and NFV-resistant clade B …


Lack Of Synergy For Inhibitors Targeting A Multi-Drug-Resistant Hiv-1 Protease, Nancy King, Laurence Melnick, Moses Prabu-Jeyabalan, Ellen Nalivaika, Shiow-Shong Yang, Yun Gao, Xiaoyi Nie, Charles Zepp, Donald Heefner, Celia Schiffer Nov 2011

Lack Of Synergy For Inhibitors Targeting A Multi-Drug-Resistant Hiv-1 Protease, Nancy King, Laurence Melnick, Moses Prabu-Jeyabalan, Ellen Nalivaika, Shiow-Shong Yang, Yun Gao, Xiaoyi Nie, Charles Zepp, Donald Heefner, Celia Schiffer

Celia A. Schiffer

The three-dimensional structures of indinavir and three newly synthesized indinavir analogs in complex with a multi-drug-resistant variant (L63P, V82T, I84V) of HIV-1 protease were determined to approximately 2.2 A resolution. Two of the three analogs have only a single modification of indinavir, and their binding affinities to the variant HIV-1 protease are enhanced over that of indinavir. However, when both modifications were combined into a single compound, the binding affinity to the protease variant was reduced. On close examination, the structural rearrangements in the protease that occur in the tightest binding inhibitor complex are mutually exclusive with the structural rearrangements …


Prediction Of Homologous Protein Structures Based On Conformational Searches And Energetics, Celia Schiffer, James Caldwell, Peter Kollman, Robert Stroud Nov 2011

Prediction Of Homologous Protein Structures Based On Conformational Searches And Energetics, Celia Schiffer, James Caldwell, Peter Kollman, Robert Stroud

Celia A. Schiffer

A "knowledge-based" method of predicting the unknown structure of a protein from a homologous known structure using energetics to determine a sidechain conformation is proposed. The method consists of exchanging the residues in the known structure for the sequence of the unknown protein. Then a conformational search with molecular mechanics energy minimization is done on the exchanged residues. The lowest energy conformer is the one picked to be the predicted structure. In the structure of bovine trypsin, the importance of including a solvation energy term in the search is demonstrated for solvent accessible residues, while molecular mechanics alone is enough …


Discovery And Selection Of Tmc114, A Next Generation Hiv-1 Protease Inhibitor, Dominique Surleraux, Abdellah Tahri, Wim Verschueren, Geert Pille, Herman De Kock, Tim Jonckers, Anik Peeters, Sandra De Meyer, Hilde Azijn, Rudi Pauwels, Marie-Pierre De Bethune, Nancy King, Moses Prabu-Jeyabalan, Celia Schiffer, Piet Wigerinck Nov 2011

Discovery And Selection Of Tmc114, A Next Generation Hiv-1 Protease Inhibitor, Dominique Surleraux, Abdellah Tahri, Wim Verschueren, Geert Pille, Herman De Kock, Tim Jonckers, Anik Peeters, Sandra De Meyer, Hilde Azijn, Rudi Pauwels, Marie-Pierre De Bethune, Nancy King, Moses Prabu-Jeyabalan, Celia Schiffer, Piet Wigerinck

Celia A. Schiffer

The screening of known HIV-1 protease inhibitors against a panel of multi-drug-resistant viruses revealed the potent activity of TMC126 on drug-resistant mutants. In comparison to amprenavir, the improved affinity of TMC126 is largely the result of one extra hydrogen bond to the backbone of the protein in the P2 pocket. Modification of the substitution pattern on the phenylsulfonamide P2' substituent of TMC126 created an interesting SAR, with the close analogue TMC114 being found to have a similar antiviral activity against the mutant and the wild-type viruses. X-ray and thermodynamic studies on both wild-type and mutant enzymes showed an extremely high …