Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Celia A. Schiffer

PDF

Discipline
Keyword
Publication Year

Articles 1 - 10 of 10

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Crystal Structure Of Apobec3a Bound To Single-Stranded Dna Reveals Structural Basis For Cytidine Deamination And Specificity, Takahide Kouno, Tania V. Silvas, Brendan J. Hilbert, Shivender Shandilya, Markus-Frederik Bohn, Brian A. Kelch, William E. Royer, Mohan Somasundaran, Nese Kurt Yilmaz, Hiroshi Matsuo, Celia A. Schiffer Jul 2017

Crystal Structure Of Apobec3a Bound To Single-Stranded Dna Reveals Structural Basis For Cytidine Deamination And Specificity, Takahide Kouno, Tania V. Silvas, Brendan J. Hilbert, Shivender Shandilya, Markus-Frederik Bohn, Brian A. Kelch, William E. Royer, Mohan Somasundaran, Nese Kurt Yilmaz, Hiroshi Matsuo, Celia A. Schiffer

Celia A. Schiffer

Nucleic acid editing enzymes are essential components of the immune system that lethally mutate viral pathogens and somatically mutate immunoglobulins, and contribute to the diversification and lethality of cancers. Among these enzymes are the seven human APOBEC3 deoxycytidine deaminases, each with unique target sequence specificity and subcellular localization. While the enzymology and biological consequences have been extensively studied, the mechanism by which APOBEC3s recognize and edit DNA remains elusive. Here we present the crystal structure of a complex of a cytidine deaminase with ssDNA bound in the active site at 2.2 A. This structure not only visualizes the active site …


Dengue Virus Ns2b/Ns3 Protease Inhibitors Exploiting The Prime Side, Kuan-Hung Lin, Akbar Ali, Linah Rusere, Djade I. Soumana, Nese Kurt Yilmaz, Celia A. Schiffer Jul 2017

Dengue Virus Ns2b/Ns3 Protease Inhibitors Exploiting The Prime Side, Kuan-Hung Lin, Akbar Ali, Linah Rusere, Djade I. Soumana, Nese Kurt Yilmaz, Celia A. Schiffer

Celia A. Schiffer

The mosquito-transmitted dengue virus (DENV) infects millions of people in tropical and subtropical regions. Maturation of DENV particles requires proper cleavage of the viral polyprotein, including processing of 8 of the 13 substrate cleavage sites by dengue virus NS2B/NS3 protease. With no available direct-acting antiviral targeting DENV, NS2/NS3 protease is a promising target for inhibitor design. Current design efforts focus on the nonprime side of the DENV protease active site, resulting in highly hydrophilic and nonspecific scaffolds. However, the prime side also significantly modulates DENV protease binding affinity, as revealed by engineering the binding loop of aprotinin, a small protein …


Interdependence Of Inhibitor Recognition In Hiv-1 Protease, Janet L. Paulsen, Florian Leidner, Debra A. Ragland, Nese Kurt Yilmaz, Celia A. Schiffer Jun 2017

Interdependence Of Inhibitor Recognition In Hiv-1 Protease, Janet L. Paulsen, Florian Leidner, Debra A. Ragland, Nese Kurt Yilmaz, Celia A. Schiffer

Celia A. Schiffer

Molecular recognition is a highly interdependent process. Subsite couplings within the active site of proteases are most often revealed through conditional amino acid preferences in substrate recognition. However, the potential effect of these couplings on inhibition and thus inhibitor design is largely unexplored. The present study examines the interdependency of subsites in HIV-1 protease using a focused library of protease inhibitors, to aid in future inhibitor design. Previously a series of darunavir (DRV) analogs was designed to systematically probe the S1' and S2' subsites. Co-crystal structures of these analogs with HIV-1 protease provide the ideal opportunity to probe subsite interdependency. …


Structural And Molecular Analysis Of A Protective Epitope Of Lyme Disease Antigen Ospa And Antibody Interactions, Shivender Shandilya, Nese Kurt Yilmaz, Ejemel Monir, Andrew Sadowski, William D. Thomas, Mark S. Klempner, Celia A. Schiffer, Yan Wang Aug 2016

Structural And Molecular Analysis Of A Protective Epitope Of Lyme Disease Antigen Ospa And Antibody Interactions, Shivender Shandilya, Nese Kurt Yilmaz, Ejemel Monir, Andrew Sadowski, William D. Thomas, Mark S. Klempner, Celia A. Schiffer, Yan Wang

Celia A. Schiffer

The murine monoclonal antibody LA-2 recognizes a clinically protective epitope on outer surface protein (OspA) of Borrelia burgdorferi, the causative agent of Lyme disease in North America. Human antibody equivalence to LA-2 is the best serologic correlate of protective antibody responses following OspA vaccination. Understanding the structural and functional basis of the LA-2 protective epitope is important for developing OspA-based vaccines and discovering prophylactic antibodies against Lyme disease. Here, we present a detailed structure-based analysis of the LA-2/OspA interaction interface and identification of residues mediating antibody recognition. Mutations were introduced into both OspA and LA-2 based on computational predictions on …


Evolution Of The Influenza A Virus Genome During Development Of Oseltamivir Resistance In Vitro, Nicholas Renzette, Daniel R. Caffrey, Konstantin B. Zeldovich, Ping Liu, Glen R. Gallagher, Daniel Aiello, Alyssa J. Porter, Evelyn A. Kurt-Jones, Daniel N. Bolon, Yu-Ping Poh, Jeffrey D. Jensen, Celia A. Schiffer, Timothy F. Kowalik, Robert W. Finberg, Jennifer P. Wang Jan 2015

Evolution Of The Influenza A Virus Genome During Development Of Oseltamivir Resistance In Vitro, Nicholas Renzette, Daniel R. Caffrey, Konstantin B. Zeldovich, Ping Liu, Glen R. Gallagher, Daniel Aiello, Alyssa J. Porter, Evelyn A. Kurt-Jones, Daniel N. Bolon, Yu-Ping Poh, Jeffrey D. Jensen, Celia A. Schiffer, Timothy F. Kowalik, Robert W. Finberg, Jennifer P. Wang

Celia A. Schiffer

Influenza A virus (IAV) is a major cause of morbidity and mortality throughout the world. Current antiviral therapies include oseltamivir, a neuraminidase inhibitor that prevents the release of nascent viral particles from infected cells. However, the IAV genome can evolve rapidly, and oseltamivir resistance mutations have been detected in numerous clinical samples. Using an in vitro evolution platform and whole-genome population sequencing, we investigated the population genomics of IAV during the development of oseltamivir resistance. Strain A/Brisbane/59/2007 (H1N1) was grown in Madin-Darby canine kidney cells with or without escalating concentrations of oseltamivir over serial passages. Following drug treatment, the H274Y …


Molecular Basis For Drug Resistance In Hiv-1 Protease, Akbar Ali, Rajintha M. Bandaranayake, Yufeng Cai, Nancy M. King, Madhavi Kolli, Seema Mittal, Jennifer E. Foulkes-Murzycki, Madhavi N. L. Nalam, Ellen A. Nalivaika, Aysegul Ozen, Moses Prabu-Jeyabalan, Kelly Thayer, Celia A. Schiffer Nov 2011

Molecular Basis For Drug Resistance In Hiv-1 Protease, Akbar Ali, Rajintha M. Bandaranayake, Yufeng Cai, Nancy M. King, Madhavi Kolli, Seema Mittal, Jennifer E. Foulkes-Murzycki, Madhavi N. L. Nalam, Ellen A. Nalivaika, Aysegul Ozen, Moses Prabu-Jeyabalan, Kelly Thayer, Celia A. Schiffer

Celia A. Schiffer

HIV-1 protease is one of the major antiviral targets in the treatment of patients infected with HIV-1. The nine FDA approved HIV-1 protease inhibitors were developed with extensive use of structure-based drug design, thus the atomic details of how the inhibitors bind are well characterized. From this structural understanding the molecular basis for drug resistance in HIV-1 protease can be elucidated. Selected mutations in response to therapy and diversity between clades in HIV-1 protease have altered the shape of the active site, potentially altered the dynamics and even altered the sequence of the cleavage sites in the Gag polyprotein. All …


Therapeutic Targeting Of C-Terminal Binding Protein In Human Cancer, Michael W. Straza, Seema Paliwal, Ramesh C. Kovi, Barur R. Rajeshkumar, Peter Trenh, Daniel Parker, Giles F. Whalen, Stephen Lyle, Celia A. Schiffer, Steven R. Grossman Nov 2011

Therapeutic Targeting Of C-Terminal Binding Protein In Human Cancer, Michael W. Straza, Seema Paliwal, Ramesh C. Kovi, Barur R. Rajeshkumar, Peter Trenh, Daniel Parker, Giles F. Whalen, Stephen Lyle, Celia A. Schiffer, Steven R. Grossman

Celia A. Schiffer

The CtBP transcriptional corepressors promote cancer cell survival and migration/invasion. CtBP senses cellular metabolism via a regulatory dehydrogenase domain, and is antagonized by p14/p19(ARF) tumor suppressors. The CtBP dehydrogenase substrate 4-methylthio-2-oxobutyric acid (MTOB) can act as a CtBP inhibitor at high concentrations, and is cytotoxic to cancer cells. MTOB induced apoptosis was p53-independent, correlated with the derepression of the proapoptotic CtBP repression target Bik, and was rescued by CtBP overexpression or Bik silencing. MTOB did not induce apoptosis in mouse embryonic fibroblasts (MEFs), but was increasingly cytotoxic to immortalized and transformed MEFs, suggesting that CtBP inhibition may provide a suitable …


Drug Resistance Against Hcv Ns3/4a Inhibitors Is Defined By The Balance Of Substrate Recognition Versus Inhibitor Binding, Keith P. Romano, Akbar Ali, William E. Royer, Celia A. Schiffer Nov 2011

Drug Resistance Against Hcv Ns3/4a Inhibitors Is Defined By The Balance Of Substrate Recognition Versus Inhibitor Binding, Keith P. Romano, Akbar Ali, William E. Royer, Celia A. Schiffer

Celia A. Schiffer

Hepatitis C virus infects an estimated 180 million people worldwide, prompting enormous efforts to develop inhibitors targeting the essential NS3/4A protease. Resistance against the most promising protease inhibitors, telaprevir, boceprevir, and ITMN-191, has emerged in clinical trials. In this study, crystal structures of the NS3/4A protease domain reveal that viral substrates bind to the protease active site in a conserved manner defining a consensus volume, or substrate envelope. Mutations that confer the most severe resistance in the clinic occur where the inhibitors protrude from the substrate envelope, as these changes selectively weaken inhibitor binding without compromising the binding of substrates. …


Time-Averaging Crystallographic Refinement: Possibilities And Limitations Using Alpha-Cyclodextrin As A Test System, Celia A. Schiffer, P. Gros, Wilfred F. Van Gunsteren Nov 2011

Time-Averaging Crystallographic Refinement: Possibilities And Limitations Using Alpha-Cyclodextrin As A Test System, Celia A. Schiffer, P. Gros, Wilfred F. Van Gunsteren

Celia A. Schiffer

The method of time-averaging crystallographic refinement is assessed using a small molecule, alpha-cyclodextrin, as a test system. A total of 16 refinements are performed on simulated data. Three resolution ranges of the data are used, the memory relaxation time of the averaging is varied, and several overall temperature factors are used. The most critical factor in the reliable application of time-averaging is the resolution of the data. The ratio of data to molecular degrees of freedom should be large enough to avoid overfitting of the data by the time-averaging procedure. The use of a free R-factor can aid in determining …


Resilience To Resistance Of Hiv-1 Protease Inhibitors: Profile Of Darunavir, Eric Lefebvre, Celia A. Schiffer Nov 2011

Resilience To Resistance Of Hiv-1 Protease Inhibitors: Profile Of Darunavir, Eric Lefebvre, Celia A. Schiffer

Celia A. Schiffer

The current effectiveness of HAART in the management of HIV infection is compromised by the emergence of extensively cross-resistant strains of HIV-1, requiring a significant need for new therapeutic agents. Due to its crucial role in viral maturation and therefore HIV-1 replication and infectivity, the HIV-1 protease continues to be a major development target for antiretroviral therapy. However, new protease inhibitors must have higher thresholds to the development of resistance and cross-resistance. Research has demonstrated that the binding characteristics between a protease inhibitor and the active site of the HIV-1 protease are key factors in the development of resistance. More …