Open Access. Powered by Scholars. Published by Universities.®

University of Arkansas, Fayetteville

Discipline
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 75

Full-Text Articles in VLSI and Circuits, Embedded and Hardware Systems

Stream Processor Development Using Multi-Threshold Null Convention Logic Asynchronous Design Methodology, Wassim Khalil May 2023

Stream Processor Development Using Multi-Threshold Null Convention Logic Asynchronous Design Methodology, Wassim Khalil

Graduate Theses and Dissertations

Decreasing transistor feature size has led to an increase in the number of transistors in integrated circuits (IC), allowing for the implementation of more complex logic. However, such logic also requires more complex clock tree synthesis (CTS) to avoid timing violations as the clock must reach many more gates over larger areas. Thus, timing analysis requires significantly more computing power and designer involvement than in the past. For these reasons, IC designers have been pushed to nix conventional synchronous (SYNC) architecture and explore novel methodologies such as asynchronous, self-timed architecture. This dissertation evaluates the nominal active energy, voltage-scaled active energy, …


Evaluation Of Single Phase Smart Pv Inverter Functions In Unbalanced Residential Distribution Systems, Darren Symonette Aug 2022

Evaluation Of Single Phase Smart Pv Inverter Functions In Unbalanced Residential Distribution Systems, Darren Symonette

Graduate Theses and Dissertations

In the United States, smart PV inverters integrated with residential distribution systems are becoming a more common occurrence. With integration of smart PV inverters, power utilities are experiencing an increase of number of operations with regards to switched capacitor banks, voltage regulators and on load tap changers. These increases can lead to excess wear and tear on the devices causing power utilities to perform unwanted replacement and maintenance. However, smart PV inverters when controlled under specific functions can enable these inverters to provide reactive power and voltage control which in turn lowers the number of operations for switched capacitor banks, …


Photoassisted Nanoscale Memory Resistors, Amir Shariffar May 2022

Photoassisted Nanoscale Memory Resistors, Amir Shariffar

Graduate Theses and Dissertations

Memristors or memory resistors are promising two-terminal devices, which have the potential to revolutionize current electronic memory technologies. Memristors have been extensively investigated and reported to be practical devices, although they still suffer from poor stability, low retention time, and laborious fabrication processes.

The primary aim of this project was to achieve a device structure of quantum dots or thin films to address a fundamental challenge of unstable resistive switching behavior in memristors. Moreover, we aimed to investigate the effects of light illumination in terms of intensity and wavelength on the performance of the fabricated memristor. The parameters such as …


Junction Temperature Estimation Of Silicon Carbide Power Module Using Internal Gate Resistance As Temperature Sensitive Electrical Parameter, Michael Sykes May 2022

Junction Temperature Estimation Of Silicon Carbide Power Module Using Internal Gate Resistance As Temperature Sensitive Electrical Parameter, Michael Sykes

Graduate Theses and Dissertations

The junction temperature of a power module is measured non-intrusively and uninterrupted in its application by analyzing the dependency of gate resistance to temperature. The circuit configuration proposed consists of altering the gate loop path and adding a basic peak detection circuit with an added low-pass filter to accurately measure the small differences seen during a temperature change on the internal gate resistance. The testing on this Silicon Carbide power module shows that the internal gate resistance has a positive temperature coefficient. This causes the current and the voltage drop on the gate loop sensing resistance to reduce as the …


Framework Of Hardware Trojan Detection Leveraging Structural Checking Tool, Rafael Dacanay Del Carmen May 2022

Framework Of Hardware Trojan Detection Leveraging Structural Checking Tool, Rafael Dacanay Del Carmen

Graduate Theses and Dissertations

Since there is a significant demand for obtaining third-party soft Intellectual Property (IP) by first-party integrated circuit (IC) vendors, it is becoming easier for adversaries to insert malicious logic known as hardware Trojans into designs. Due to this, vendors need to find ways to screen the third-party IPs for possible security threats and then mitigate them. The development of the Structural Checking (SC) tool provides a solution to this issue. This tool analyzes the structure of an unknown soft IP design and creates a network of all the signals within the design and how they are connected to each other. …


Design Of A Bandgap Voltage Reference, Nicolaus Vail May 2022

Design Of A Bandgap Voltage Reference, Nicolaus Vail

Electrical Engineering Undergraduate Honors Theses

This thesis details the design process of a bandgap voltage reference (BGR) integrated circuit in a 180 nm CMOS process. A BGR provides a constant DC voltage across a range of operating temperatures and supply voltages. By its nature, the circuit is intended as a reference, not to provide current, so the output would be connected to a very high impedance, such as the gate of a transistor. At 27°C, this design provides a 955 mV reference voltage given a nominal VDD of 3 V. From 20°C to 175°C, the output voltage has a variance of 7.2 mV (approximately 0.8%) …


Design, Extraction, And Optimization Tool Flows And Methodologies For Homogeneous And Heterogeneous Multi-Chip 2.5d Systems, Md Arafat Kabir Dec 2021

Design, Extraction, And Optimization Tool Flows And Methodologies For Homogeneous And Heterogeneous Multi-Chip 2.5d Systems, Md Arafat Kabir

Graduate Theses and Dissertations

Chip and packaging industries are making significant progress in 2.5D design as a result of increasing popularity of their application. In advanced high-density 2.5D packages, package redistribution layers become similar to chip Back-End-of-Line routing layers, and the gap between them scales down with pin density improvement. Chiplet-package interactions become significant and severely affect system performance and reliability. Moreover, 2.5D integration offers opportunities to apply novel design techniques. The traditional die-by-die design approach neither carefully considers these interactions nor fully exploits the cross-boundary design opportunities.

This thesis presents chiplet-package cross-boundary design, extraction, analysis, and optimization tool flows and methodologies for high-density …


Reference Design Of An Online Emulation And Hot-Patching Approach For Power Electronic Controller Validation, Estefano Soria Pearson Jul 2021

Reference Design Of An Online Emulation And Hot-Patching Approach For Power Electronic Controller Validation, Estefano Soria Pearson

Graduate Theses and Dissertations

This thesis aims to develop a reference design of an online security system approach embedded in a power electronic controller for cybersecurity purposes. Cybersecurity in power electronics focuses on reducing vulnerabilities in the system, where most reside in the communication with the hardware devices. Although methods to secure communications lessen the probability and effects of cyber-attacks, discovering vulnerabilities is inevitable. This thesis attempts to provide a fail-safe approach to securing the system by targeting the safety of the power-electronic controller. This approach applies an additional security layer in case of a malicious or accidental controller firmware malfunction.

The online security …


Design And Fabrication Of A Microstrip Bandpass Filter In Ltcc, Allison Rucker May 2021

Design And Fabrication Of A Microstrip Bandpass Filter In Ltcc, Allison Rucker

Electrical Engineering Undergraduate Honors Theses

The goal of the project was to design and fabricate a bandpass filter with a center frequency of 25GHz with a 2GHz bandwidth. The first step was to do the calculation to design a bandpass filter to meet these specifications along with the properties of the DupontTM GreenTapeTM 9K7. HFSS was then used to verify the results from the initial calculations. There was a significant error between the two results, so more tweaking was done to the calculations to get a better center frequency. After a final design was decided, the fabrication process started. Low-Temperature Co-Fired Ceramics (LLTC) …


Improvement Of Stability Of A Grid-Connected Inverter With An Lcl Filter By Robust Strong Active Damping And Model Predictive Control, Seungyong Lee May 2021

Improvement Of Stability Of A Grid-Connected Inverter With An Lcl Filter By Robust Strong Active Damping And Model Predictive Control, Seungyong Lee

Graduate Theses and Dissertations

This study addresses development and implementation of robust control methods for a three-phase grid-connected voltage source inverter (VSI) accompanied by an inductive-capacitive-inductive (LCL) filter. A challenge of current control for the VSI is LCL filter resonance near to the control stability boundary, which interacts with the inverter control switching actions and creates the possibility of instability. In general, active damping is needed to stabilize the system and ensure robust performance in steady-state and dynamic responses. While many active damping methods have been proposed to resolve this issue, capacitor-current-feedback active damping has been most widely used for its simple implementation.

There …


Fractional Order Identification Method And Control: Development Of Control For Non-Minimum Phase Fractional Order System, Majid Abdullah Alhomim Dec 2020

Fractional Order Identification Method And Control: Development Of Control For Non-Minimum Phase Fractional Order System, Majid Abdullah Alhomim

Graduate Theses and Dissertations

The increasing use of renewable energy has resulted in the need for improved a dc-dc converters. This type of electronic-based equipment is needed to interface the dc voltages normally encountered with solar arrays and battery systems to voltage levels suitable for connecting three phase inverters to distribution level networks. As grid-connected solar power levels continue to increase, there is a corresponding need for improved modeling and control of power electronic converters. In particular, higher levels of boost ratios are needed to connect low voltage circuits (less than 1000 V) to medium voltage levels in the range of 13 kV to …


Resistive Switching In Fto/Cuo-Cu2o/Au Memory Devices, Amir Shariffar, Haider Salman, Tanveer A. Siddique, Wafaa Gebril, M. Omar Manasreh Oct 2020

Resistive Switching In Fto/Cuo-Cu2o/Au Memory Devices, Amir Shariffar, Haider Salman, Tanveer A. Siddique, Wafaa Gebril, M. Omar Manasreh

Electrical Engineering Faculty Publications and Presentations

Memristors are considered to be next-generation non-volatile memory devices owing to their fast switching and low power consumption. Metal oxide memristors have been extensively investigated and reported to be promising devices, although they still suffer from poor stability and laborious fabrication process. Herein, we report a stable and power-efficient memristor with novel heterogenous electrodes structure and facile fabrication based on CuO-Cu2O complex thin films. The proposed structure of the memristor contains an active complex layer of cupric oxide (CuO) and cuprous oxide (Cu2O) sandwiched between fluorine-doped tin oxide (FTO) and gold (Au) electrodes. The fabricated memristors demonstrate bipolar resistive switching …


Signals And Systems, Jingxian Wu Aug 2020

Signals And Systems, Jingxian Wu

Open Educational Resources

Signals and Systems is a core Electrical Engineering undergraduate course. This course covers the topics of signal and system analysis, with an emphasis on the analysis of linear time-invariant systems. The materials presented in this course are designed for a 15-week course for junior or senior level students. The open access materials for this course include:

Course outline and guides: a detailed guideline that provides a week-by-week teaching schedule for a 15-week semester.

Lecture notes: a complete set of lecture notes with detailed explanations and a large number of examples that cover all the contents that are offered in this …


Design Of Control System With Feedback Loop For A Pulsatile Pump, Ian Scott Sanders Jul 2020

Design Of Control System With Feedback Loop For A Pulsatile Pump, Ian Scott Sanders

Graduate Theses and Dissertations

This paper describes the design and implementation of a closed-loop proportional, integral, differential (PID) control system for a custom in-house pulsatile pump apparatus for the University of Arkansas Biomedical Department. The control system is designed to control a MOONS’ PL34HD0L8500 hybrid stepper motor using a dual H-bridge motor driver network with four pulse-width modulated (PWM) inputs to drive a pulsatile pump apparatus at motor stepping frequencies up to 2kHz. The speed of the motor is controlled from a pressure profile transmitted from an external source over RS-232 communication that specifies the motor speed, number of datapoints, and an array of …


Built-In Self-Test (Bist) For Multi-Threshold Null Convention Logic (Mtncl) Circuits, Brett Sparkman May 2020

Built-In Self-Test (Bist) For Multi-Threshold Null Convention Logic (Mtncl) Circuits, Brett Sparkman

Graduate Theses and Dissertations

This dissertation proposes a Built-In Self-Test (BIST) hardware implementation for Multi-Threshold NULL Convention Logic (MTNCL) circuits. Two different methods are proposed: an area-optimized topology that requires minimal area overhead, and a test-performance-optimized topology that utilizes parallelism and internal hardware to reduce the overall test time through additional controllability points. Furthermore, an automated software flow is proposed to insert, simulate, and analyze an input MTNCL netlist to obtain a desired fault coverage, if possible, through iterative digital and fault simulations. The proposed automated flow is capable of producing both area-optimized and test-performance-optimized BIST circuits and scripts for digital and fault simulation …


Area Efficient Device Optimization For Esd Protection In High Speed Interface Ics, Dan Thomas Jarard May 2020

Area Efficient Device Optimization For Esd Protection In High Speed Interface Ics, Dan Thomas Jarard

Graduate Theses and Dissertations

Electrostatic discharge (ESD) protection is considered as a vital step in integrated circuit (IC) manufacturing process. IC chips are unable to overcome the effects of transient events without adequate discharge protection. Recent trend in the industry has seen the incorporation of system level ESD protection within the IC chip. Incorporating system level on-chip ESD protection often increases cost, degrades circuit performance and consumes layout area which could otherwise be used for improving the circuit performance. These design challenges could be easily overcome if the parasitic components in a circuit were used for ESD protection. Despite the various design challenges, on-chip …


Investigations Of New Fault-Tolerant Methods For Multilevel Inverters, Haider Mhiesan May 2020

Investigations Of New Fault-Tolerant Methods For Multilevel Inverters, Haider Mhiesan

Graduate Theses and Dissertations

The demands of power electronics with high power capability have increased in the last decades. These needs have driven the expansion of existing power electronics topologies and developing new power electronics generations. Multilevel inverters (MLI) are one of the most promising power electronics circuits that have been implemented and commercialized in high-voltage direct current (HVDC), motor drives, and battery energy storage systems (BESS). The expanding uses of the MLI have lead to creation of new topologies for different applications. However, one of the disadvantages of using MLIs is their complexity. MLIs consist of a large number of switching devices, which …


Evaluation And Analysis Of Null Convention Logic Circuits, John Davis Brady Dec 2019

Evaluation And Analysis Of Null Convention Logic Circuits, John Davis Brady

Graduate Theses and Dissertations

Integrated circuit (IC) designers face many challenges in utilizing state-of-the-art technology nodes, such as the increased effects of process variation on timing analysis and heterogeneous multi-die architectures that span across multiple technologies while simultaneously increasing performance and decreasing power consumption. These challenges provide opportunity for utilization of asynchronous design paradigms due to their inherent flexibility and robustness.

While NULL Convention Logic (NCL) has been implemented in a variety of applications, current literature does not fully encompass the intricacies of NCL power performance across a variety of applications, technology nodes, circuit scale, and voltage scaling, thereby preventing further adoption and utilization …


Switching Trajectory Control For High Voltage Silicon Carbide Power Devices With Novel Active Gate Drivers, Shuang Zhao Aug 2019

Switching Trajectory Control For High Voltage Silicon Carbide Power Devices With Novel Active Gate Drivers, Shuang Zhao

Graduate Theses and Dissertations

The penetration of silicon carbide (SiC) semiconductor devices is increasing in the power industry due to their lower parasitics, higher blocking voltage, and higher thermal conductivity over their silicon (Si) counterparts. Applications of high voltage SiC power devices, generally 10 kV or higher, can significantly reduce the amount of the cascaded levels of converters in the distributed system, simplify the system by reducing the number of the semiconductor devices, and increase the system reliability.

However, the gate drivers for high voltage SiC devices are not available on the market. Also, the characteristics of the third generation 10 kV SiC MOSFETs …


Design Of An Embedded Iris Recognition System For Use With A Multi-Factor Authentication System., Christopher David Hess May 2019

Design Of An Embedded Iris Recognition System For Use With A Multi-Factor Authentication System., Christopher David Hess

Electrical Engineering Undergraduate Honors Theses

This paper describes in detail the design, manufacturing and testing of an embedded iris scanner for use with a multifactor authentication system. The design process for this project included hardware design from part selection to board design to populating. Additionally, this process included the entirety of the software development, though the iris recognition process was largely based on other works. The functional requirements for the overall multi-factor authentication system were to have three authentication methods with a thirty second window to complete all three. The system acceptance accuracy was required to be greater than 75%. Those requirements therefore dictate that …


Hardware Ip Classification Through Weighted Characteristics, Brendan Mcgeehan May 2019

Hardware Ip Classification Through Weighted Characteristics, Brendan Mcgeehan

Graduate Theses and Dissertations

Today’s business model for hardware designs frequently incorporates third-party Intellectual Property (IP) due to the many benefits it can bring to a company. For instance, outsourcing certain components of an overall design can reduce time-to-market by allowing each party to specialize and perfect a specific part of the overall design. However, allowing third-party involvement also increases the possibility of malicious attacks, such as hardware Trojan insertion. Trojan insertion is a particularly dangerous security threat because testing the functionality of an IP can often leave the Trojan undetected. Therefore, this thesis work provides an improvement on a Trojan detection method known …


Asynchronous Circuit Synthesis Using Multi-Threshold Null Convention Logic, Nicholas Renoudet Mize May 2019

Asynchronous Circuit Synthesis Using Multi-Threshold Null Convention Logic, Nicholas Renoudet Mize

Graduate Theses and Dissertations

As the demand for an energy-efficient alternative to traditional synchronous circuit design grows, hardware designers must reconsider the traditional clock tree. By doing away with the constrains of a clock, asynchronous sequential circuit designs can achieve a much greater level of efficiency. The utilization of asynchronous logic synthesis flows has enabled researchers to better implement asynchronous circuit designs which have been optimized using the same industry standard tools that are already used in sequential synchronous designs. This thesis offers a new flow for such tools which implements the MTNCL asynchronous circuit architecture.


Model Development And Assessment Of The Gate Network In A High-Performance Sic Power Module, William Austin Curbow May 2019

Model Development And Assessment Of The Gate Network In A High-Performance Sic Power Module, William Austin Curbow

Graduate Theses and Dissertations

The main objective of this effort is to determine points of weakness in the gate network of a high-performance SiC power module and to offer remedies to these issues to increase the overall performance, robustness, and reliability of the technology. In order to accomplish this goal, a highly accurate model of the gate network is developed through three methods of parameter extraction: calculation, simulation, and measurement. A SPICE model of the gate network is developed to analyze four electrical issues in a high-speed, SiC-based power module including the necessary internal gate resistance for damping under-voltage and over-voltage transients, the disparity …


An Rs-485 Transceiver In A Silicon Carbide Cmos Process, Maria Raquel Benavides Herrera Dec 2018

An Rs-485 Transceiver In A Silicon Carbide Cmos Process, Maria Raquel Benavides Herrera

Graduate Theses and Dissertations

This thesis presents the design, simulation and test results of a silicon carbide (SiC) RS-485 transceiver for high temperature applications. This circuit is a building block in the design and fabrication of a digital data processing and control system. Automation processes for extreme environments, remote connection to high temperature locations, deep earth drilling, and high temperature data acquisition are some of the potential applications for such a system. The transceiver was designed and developed in a 1.2 µm SiC-CMOS process by Raytheon Systems, Ltd. (UK). It has been tested with a supply voltage of 12 V and 15 V, temperatures …


Efficacy Of Multi-Threshold Null Convention Logic In Low-Power Applications, Brent Bell Aug 2018

Efficacy Of Multi-Threshold Null Convention Logic In Low-Power Applications, Brent Bell

Graduate Theses and Dissertations

In order for an asynchronous design paradigm such as Multi-Threshold NULL Convention Logic (MTNCL) to be adopted by industry, it is important for circuit designers to be aware of its advantages and drawbacks especially with respect to power usage. The power tradeoff between MTNCL and synchronous designs depends on many different factors including design type, circuit size, process node, and pipeline granularity. Each of these design dimensions influences the active power and the leakage power comparisons. This dissertation analyzes the effects of different design dimensions on power consumption and the associated rational for these effects. Results show that while MTNCL …


Low Latency Intrusion Detection In Smart Grids, Israel Zairi Akingeneye May 2018

Low Latency Intrusion Detection In Smart Grids, Israel Zairi Akingeneye

Graduate Theses and Dissertations

The transformation of traditional power grids into smart grids has seen more new technologies such as communication networks and smart meters (sensors) being integrated into the physical infrastructure of the power grids. However, these technologies pose new vulnerabilities to the cybersecurity of power grids as malicious attacks can be launched by adversaries to attack the smart meters and modify the measurement data collected by these meters. If not timely detected and removed, these attacks may lead to inaccurate system state estimation, which is critical to the system operators for control decisions such as economic dispatch and other related functions.

This …


Asynchronous 3d (Async3d): Design Methodology And Analysis Of 3d Asynchronous Circuits, Francis Corpuz Sabado Dec 2017

Asynchronous 3d (Async3d): Design Methodology And Analysis Of 3d Asynchronous Circuits, Francis Corpuz Sabado

Graduate Theses and Dissertations

This dissertation focuses on the application of 3D integrated circuit (IC) technology on asynchronous logic paradigms, mainly NULL Convention Logic (NCL) and Multi-Threshold NCL (MTNCL). It presents the Async3D tool flow and library for NCL and MTNCL 3D ICs. It also analyzes NCL and MTNCL circuits in 3D IC. Several FIR filter designs were implement in NCL, MTNCL, and synchronous architecture to compare synchronous and asynchronous circuits in 2D and 3D ICs. The designs were normalized based on performance and several metrics were measured for comparison. Area, interconnect length, power consumption, and power density were compared among NCL, MTNCL, and …


Silicon Germanium Bicmos Comparator Designed For Use In An Extreme Environment Analog To Digital Converter, Benjamin Riley Sissons May 2017

Silicon Germanium Bicmos Comparator Designed For Use In An Extreme Environment Analog To Digital Converter, Benjamin Riley Sissons

Graduate Theses and Dissertations

This thesis demonstrates the process of creating a radiation hardened and extreme temperature operating comparator from start to finish in the 90 nm SiGe 9HP process node. This includes the entire design flow from examining comparator topologies, to designing the initial comparator circuits, to simulating the comparator over a temperature range of -196°C to 125°C, and finally the testing of the fabricated circuit. To verify the circuit would work at low temperatures, several new device models were created that could be used for simulations at -196°C. In addition to its properties as a standalone comparator, the circuit was also used …


Project Pradio, Trigg T. La Tour May 2017

Project Pradio, Trigg T. La Tour

Computer Science and Computer Engineering Undergraduate Honors Theses

This paper examines the design and manufacturing of a device that allows two or more users to share a wireless audio stream. Effectively, this allows a group of people to listen to the same audio in a synchronized manner. The product was unable to be completed in the allotted time. Regardless, significant progress was made and valuable insight into the circuit board design process was gained.


Short-Circuit Protection For Low-Voltage Dc Distribution Systems Based On Solid-State Circuit Breakers, Sharthak Munasib May 2017

Short-Circuit Protection For Low-Voltage Dc Distribution Systems Based On Solid-State Circuit Breakers, Sharthak Munasib

Graduate Theses and Dissertations

Proper short-circuit protection in dc distribution systems has provided an austere challenge to researchers as the development of commercially-viable equipment providing fast operation, coordination and reliability still continues. The objective of this thesis is to analyze issues associated with short-circuit protection of low-voltage dc (LVDC) distribution systems and propose a short-circuit protection methodology based on solid-state circuit breakers (SSCBs) that provides fault-current limiting (FCL). Simulation results for a simplified notional 1-kVdc distribution system, performed in MATLAB/SIMULINKTM, would be presented to illustrate that SSCB solutions based on reverse-blocking integrated gate-commutated thyristors (RB-IGCT) are feasible for low-voltage dc distribution systems but requires …