Open Access. Powered by Scholars. Published by Universities.®

Biochemical and Biomolecular Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 31 - 32 of 32

Full-Text Articles in Biochemical and Biomolecular Engineering

Capturing More Light: Phycobilisome Characterization For Increased Hydrogen Production Efficiency, Paul Abraham Willard May 2012

Capturing More Light: Phycobilisome Characterization For Increased Hydrogen Production Efficiency, Paul Abraham Willard

Masters Theses

Alternative energy and biofuels are a growing area of research. The demand for more and clean energy is ever increasing, but the current technology is inefficient, expensive, and incapable of meeting the demands of the current market. Hydrogen is a potential future fuel, as it is both clean and renewable, but its formation through conventional means is costly and inefficient. Photosynthesis can be utilized for the formation of hydrogen, which can then serve as a convenient and renewable biofuel. Photosynthetic hydrogen evolution is observed in vitro, but the current photosystem design is not very versatile and optimized to use …


Temperature Influence And Heat Management Requirements Of Microalgae Cultivation In Photobioreactors, Thomas Hagen Mehlitz Feb 2009

Temperature Influence And Heat Management Requirements Of Microalgae Cultivation In Photobioreactors, Thomas Hagen Mehlitz

Master's Theses

Microalgae are considered one of the most promising feedstocks for biofuel production for the future. The most efficient way to produce vast amounts of algal biomass is the use of closed tubular photobioreactors (PBR). The heat requirement for a given system is a major concern since the best algae growth rates are obtained between 25-30 °C, depending on the specific strain. A procedure to determine temperature influence on algal growth rates was developed for a lab-scale PBR system using the species Chlorella. A maximum growth rate of 1.44 doublings per day at 29 °C (optimal temperature) was determined. In addition, …