Open Access. Powered by Scholars. Published by Universities.®

Biochemical and Biomolecular Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 1 - 24 of 24

Full-Text Articles in Biochemical and Biomolecular Engineering

Characterization Of Lignin Structural Variability And The Associated Application In Genome Wide Association Studies, Nathan D. Bryant Dec 2023

Characterization Of Lignin Structural Variability And The Associated Application In Genome Wide Association Studies, Nathan D. Bryant

Doctoral Dissertations

Poplar (Populus sp.) is a promising biofuel feedstock due to advantageous features such as fast growth, the ability to grow on marginal land, and relatively low lignin content. However, there is tremendous variability associated with the composition of biomass. Understanding this variability, especially in lignin, is crucial to developing and implementing financially viable, integrated biorefineries. Although lignin is typically described as being comprised of three primary monolignols (syringyl, guaiacyl, p-hydroxyphenyl), it is a highly irregular biopolymer that can incorporate non-canonical monolignols. It is also connected by a variety of interunit linkages, adding to its complexity. Secondary cell wall …


Antimicrobial Activity And Mechanism Of Amyloid Proteins And Synthetic Conjugated Polyelectrolytes, Fahimeh Maghsoodi May 2023

Antimicrobial Activity And Mechanism Of Amyloid Proteins And Synthetic Conjugated Polyelectrolytes, Fahimeh Maghsoodi

Nanoscience and Microsystems ETDs

Although the exact cause of Alzheimer’s disease (AD) is still unknown, it is widely considered that the accumulation of amyloid plaques composed of the amyloid-β (Aβ) peptide in the brain is linked to neurodegeneration. Co-localization of viral DNA with Aβ plaques, the association of brain infection and AD, and research indicating the protective effect of Aβ against bacteria and fungi in mice and human cells have led to the hypothesis that Aβ expression and deposition may be central to its function as an antimicrobial peptide (AMP). In my thesis research, we seek to elucidate how Aβ functions as an AMP …


Investigation Of Mechanical Regulation On Stat3 Activity And Mmp Production, Jaxson R. Libby Jan 2023

Investigation Of Mechanical Regulation On Stat3 Activity And Mmp Production, Jaxson R. Libby

Honors Theses and Capstones

Transcription factor, STAT3, is inappropriately expressed in cancer cells, and has contrasting activation in 2D versus 3D microenvironments. 2D plates are often used for drug screening and do not always recapitulate in vivo responses. To combat inaccurate 2D drug studies, a 3D hydrogel was created to support the growth of cancer cells into a tumor-like environment. The hydrogel consists of a biocompatible dextran homopolysaccharide, cell adhesion RGD sequences, and crosslinker MMP labile peptides. A pH dependent reaction couples the RGD sequences to dextran then the polymers are crosslinked into a gel. Crosslinking is accomplished using terminal cysteine peptide sequences, allowing …


Novel Approaches Towards Improved Purity In High Yield Transcription Reactions, Elvan Cavac Jun 2021

Novel Approaches Towards Improved Purity In High Yield Transcription Reactions, Elvan Cavac

Doctoral Dissertations

High yields of RNA (e.g., mRNA, gRNA, lncRNA) are routinely prepared following a two-step approach: high yield in vitro transcription using T7 RNA polymerase, followed by extensive purification using gel or chromatic methods. In high yield transcription reactions, as RNA accumulates in solution, T7 RNA polymerase rebinds and extends the encoded RNA (using the RNA as a template), resulting in a product pool contaminated with longer than desired, (partially) double stranded impurities. Current purification methods often fail to fully eliminate these impurities which, if present in therapeutics, can stimulate the innate immune response with potentially fatal consequences. This study establishes …


Engineering Modularity Of Ester Biosynthesis Across Biological Scales, Hyeongmin Seo May 2021

Engineering Modularity Of Ester Biosynthesis Across Biological Scales, Hyeongmin Seo

Doctoral Dissertations

Metabolic engineering and synthetic biology enable controlled manipulation of whole-cell biocatalysts to produce valuable chemicals from renewable feedstocks in a rapid and efficient manner, helping reduce our reliance on the conventional petroleum-based chemical synthesis. However, strain engineering process is costly and time-consuming that developing economically competitive bioprocess at industrial scale is still challenging. To accelerate the strain engineering process, modular cell engineering has been proposed as an innovative approach that harnesses modularity of metabolism for designing microbial cell factories. It is important to understand biological modularity and to develop design principles for effective implementation of modular cell engineering. In this …


Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand Jan 2021

Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand

Dissertations and Theses

Localized chemical delivery plays an essential role in the fundamental information transfers within biological systems. Thus, the ability to mimic the natural chemical signal modulation would provide significant contributions to understand the functional signaling pathway of biological cells and develop new prosthetic devices for neurological disorders. In this paper, we demonstrate a light-controlled hydrogel platform that can be used for localized chemical delivery in a high spatial resolution. By utilizing the photothermal behavior of graphene-hydrogel composites confined within micron-sized fluidic channels, patterned light illumination creates the parallel and independent actuation of chemical release in a group of fluidic ports. The …


Micro-Physiological Models To Mimic Mucosal Barrier Complexity Of The Human Intestine In Vitro, Abhinav Sharma Dec 2020

Micro-Physiological Models To Mimic Mucosal Barrier Complexity Of The Human Intestine In Vitro, Abhinav Sharma

Doctoral Dissertations

The mucosal barrier in the intestine is vital to maintain selective absorption of nutrients while protecting internal tissues and maintaining symbiotic relationship with luminal microbiota. This bio-barrier consists of a cellular epithelial barrier and an acellular mucus barrier. Secreted mucus regulates barrier function via in situ biochemical and biophysical interaction with luminal content that continually evolves during digestion and absorption. Increasing evidence suggests that a mucus barrier is indispensable to maintain homeostasis in the gastrointestinal tract. However, the importance of mucus barrier is largely underrated for in vitro mucosal tissue modeling. The major gap is the lack of experimental material …


Virus Purification Framework And Enhancement In Aqueous Two-Phase System, Pratik Umesh Joshi Jan 2020

Virus Purification Framework And Enhancement In Aqueous Two-Phase System, Pratik Umesh Joshi

Dissertations, Master's Theses and Master's Reports

Viral infections regularly pose detrimental health risks to humans. Preventing viral infections through global immunization requires the production of large doses of vaccines. The increasing demand for vaccines, especially during pandemics such as COVID-19, has challenged current manufacturing strategy to develop advanced unit operations with high throughput capability. Over the decade, the upstream processing responsible for synthesizing viral products in cell cultures has shown significant success in yielding high titers of viruses and virus-like particles. The progress in the upstream stage has now shifted the bottleneck to the downstream processing (DSP). Overlooked for decades, the DSP responsible for viral product …


Maximizing And Modeling Malonyl-Coa Production In Escherichia Coli, Tatiana Thompson Silveira Mello Jun 2019

Maximizing And Modeling Malonyl-Coa Production In Escherichia Coli, Tatiana Thompson Silveira Mello

LSU Master's Theses

In E. coli, fatty acid synthesis is catalyzed by the enzyme acetyl-CoA carboxylase (ACC), which converts acetyl-CoA into malonyl-CoA. Malonyl-CoA is a major building block for numerous of bioproducts. Multiple parameters regulate the homeostatic cellular concentration of malonyl-CoA, keeping it at a very low level. Understanding how these parameters affect the bacterial production of malonyl-CoA is fundamental to maximizing it and its bioproducts. To this end, competing pathways consuming malonyl-CoA can be eliminated, and optimal nutritional and environmental conditions can be provided to the fermentation broth. Most previous studies utilized genetic modifications, expensive consumables, and high-cost quantification methods, making …


The Synthesis, Purification, And Characterization Of The P3 Peptoid, Myles Joyce May 2019

The Synthesis, Purification, And Characterization Of The P3 Peptoid, Myles Joyce

Chemical Engineering Undergraduate Honors Theses

The relatively young field of nano-systems has vast applications over various different fields. Peptoids (peptide analogues) and their uses are consistently investigated components of these nano-studies. A particularly interesting group of peptoids are able to self-assemble into secondary structures under the right conditions. The P3 peptoid is able to form microspheres if properly synthesized and purified. Microspheres are frequently studied due to their low surface area to volume ratios. This unique aspect of microspheres makes them an excellent candidate for drug delivery systems; however, these systems must also be robust so that the desired compound can be encapsulated within the …


Impact Of Conformational Change, Solvation Environment, And Post-Translational Modification On Desulfurization Enzyme 2'-Hydroxybiphenyl-2-Sulfinate Desulfinase (Dszb) Stability And Activity, Landon C. Mills Jan 2019

Impact Of Conformational Change, Solvation Environment, And Post-Translational Modification On Desulfurization Enzyme 2'-Hydroxybiphenyl-2-Sulfinate Desulfinase (Dszb) Stability And Activity, Landon C. Mills

Theses and Dissertations--Chemical and Materials Engineering

Naturally occurring enzymatic pathways enable highly specific, rapid thiophenic sulfur cleavage occurring at ambient temperature and pressure, which may be harnessed for the desulfurization of petroleum-based fuel. One pathway found in bacteria is a four-step catabolic pathway (the 4S pathway) converting dibenzothiophene (DBT), a common crude oil contaminant, into 2-hydroxybiphenyl (HBP) without disrupting the carbon-carbon bonds. 2’-Hydroxybiphenyl-2-sulfinate desulfinase (DszB), the rate-limiting enzyme in the enzyme cascade, is capable of selectively cleaving carbon-sulfur bonds. Accordingly, understanding the molecular mechanisms of DszB activity may enable development of the cascade as industrial biotechnology. Based on crystallographic evidence, we hypothesized that DszB …


Direct Quantification Of Deubiquitinating Enzyme Activity In Single Intact Cells, Nora Safabakhsh Aug 2018

Direct Quantification Of Deubiquitinating Enzyme Activity In Single Intact Cells, Nora Safabakhsh

LSU Doctoral Dissertations

Challenges in drug efficacy occur during the treatment of most types of cancer due to the heterogeneity of the tumor microenvironment. This has led to the development of personalized medicine. Due to the clinical success of the proteasome inhibitors Bortezomib and Carfilzomib in treatment of multiple myeloma, interest has shifted towards molecularly-targeted chemotherapeutics for ubiquitin-proteasome system (UPS). Deubiquitinating enzymes (DUBs) are an essential part of this pathway which have been found to promote Bortezomib resistance in multiple myeloma patients. Unfortunately, there is a lack of specific, high throughput biochemical assays to characterize DUB activity in patient samples before and after …


Understanding Carbohydrate Recognition Mechanisms In Non-Catalytic Proteins Through Molecular Simulations, Abhishek A. Kognole Jan 2018

Understanding Carbohydrate Recognition Mechanisms In Non-Catalytic Proteins Through Molecular Simulations, Abhishek A. Kognole

Theses and Dissertations--Chemical and Materials Engineering

Non-catalytic protein-carbohydrate interactions are an essential element of various biological events. This dissertation presents the work on understanding carbohydrate recognition mechanisms and their physical significance in two groups of non-catalytic proteins, also called lectins, which play key roles in major applications such as cellulosic biofuel production and drug delivery pathways. A computational approach using molecular modeling, molecular dynamic simulations and free energy calculations was used to study molecular-level protein-carbohydrate and protein-protein interactions. Various microorganisms like bacteria and fungi secret multi-modular enzymes to deconstruct cellulosic biomass into fermentable sugars. The carbohydrate binding modules (CBM) are non-catalytic domains of such enzymes that …


Enzymatically Active Microspheres For Self-Propelled Colloidal Engines, Jungeun Park Jan 2017

Enzymatically Active Microspheres For Self-Propelled Colloidal Engines, Jungeun Park

Dissertations and Theses

Micro- and nano-motors have attracted numerous attentions from various scientific areas due to their potential applications. Most studies on self-propelled colloidal engines have exploited catalytic decomposition of hydrogen peroxide to drive the motor. Since the hydrogen peroxide is caustic, it is not suitable to use in biological applications, encouraging people to develop “greener” fuels. The aim of this research is to study a new transduction mechanism for self-propulsion not tied to hydrogen peroxide, and which can in particular be used with biological molecules as fuels. In this study, we focus on making particles with enzymatic activity which can effectively decompose …


Membrane Chromatography For Bioseparations: Ligand Design And Optimization, Zizhao Liu Dec 2016

Membrane Chromatography For Bioseparations: Ligand Design And Optimization, Zizhao Liu

Graduate Theses and Dissertations

Membrane chromatography, or membrane adsorber, represents an attractive alternative to conventional packed bed chromatography used in downstream processing. Membrane chromatography has many advantages, including high productivity, low buffer consumption and ease to scale up. This doctoral dissertation focuses on developing novel polymeric ligands for protein separations using membrane chromatography. Atom transfer radical polymerization (ATRP), known as a controlled radical polymerization technique, has been used to control the architecture of grafted polymeric ligands. The center theme of this dissertation is to develop new polymeric ligands and investigate how the polymer’s property (e.g. flexibility, hydrophobicity) and architecture (e.g. chain density, chain length) …


Lignin Maximization: Analyzing The Impact Of Different Feedstocks And Feedstock Ratios Using Organosolv Fractionation, Marc Banholzer Dec 2016

Lignin Maximization: Analyzing The Impact Of Different Feedstocks And Feedstock Ratios Using Organosolv Fractionation, Marc Banholzer

Masters Theses

Over-exploitation of fossil fuels coupled with increasing pressure to reduce carbon emissions are prompting a transition from conventional petrochemical feedstocks to sustainable and renewable sourced carbon. The use of lignocellulosic biomass as a feedstock for integrated biorefining is of current high interest, as separation into its component parts affords process streams of cellulose, hemicellulose and lignin, each of which can serve as a starting point for the production of biobased chemicals and fuels. Given the large number of potential sources of lignocellulosic feedstocks, the biorefinery will need to adapt to the supplies available over a normal growing season. Of particular …


Production And Harvest Of Microalgae In Wastewater Raceways With Resource Recycling, Alexander Colin Roberts Dec 2015

Production And Harvest Of Microalgae In Wastewater Raceways With Resource Recycling, Alexander Colin Roberts

Master's Theses

Microalgae can be grown on municipal wastewater media to both treat the wastewater and produce feedstock for algae biofuel production. However the reliability of treatment must be demonstrated, as well as high areal algae productivity on recycled wastewater media and efficient sedimentation harvesting. This processes was studied at pilot scale in the present research.

A pilot facility was operated with nine CO2-supplemented raceway ponds, each with a 33-m2 surface area and a 0.3-m depth, continuously from March 6, 2013 through September 24, 2014. The ponds were operated as three sets of triplicates with two sets continuously fed …


Using Peptoids To Build Robust, Efficient Microarray Systems, Dhaval Sunil Shah Jul 2015

Using Peptoids To Build Robust, Efficient Microarray Systems, Dhaval Sunil Shah

Graduate Theses and Dissertations

Recent studies have shown microarrays to be indispensable for various biological applications, allowing for high-throughput processing and screening of biological samples such as RNA, DNA, proteins and peptides using a small sample volume (< 1 µL). Peptoids (poly-N-substituted glycine oligomers) can be used as a substitute for antibodies as capture molecules, as well as coatings for slides in antibody microarrays. The ease of synthesis of peptoids, high customizability with desired bioactivity, and speed of synthesis allows us to build a diagnostic system with a large dynamic range that can detect biomolecules from a minimal sample size. In this study, peptoid-based antibody mimics are designed to have both structural and functional features similar to those of antibodies, including a stable constant region (scaffolding) and a variable region for protein recognition. Peptoids previously screened via combinatorial library synthesis to be specific to bind Mdm-2 (mouse double minute 2 homolog) and GST (gluthathione S-transferase), have been synthesized. The protein recognition peptoids have been conjugated to PEG (polyethylene glycol) molecules with modified end groups; an amine group on one end that allows for immobilization and orientation on the slide, and an azide group on the other end that will allow for attachment to the peptoid through “click chemistry”. The number of capture molecules printed on the slides can be increased by making the available surface area of the slide larger via coating with microspheres. We have determined that partially water soluble peptoids that are also helical, can self-assemble into microspheres. Sequences have been developed that can consistently produce uniform microsphere coatings on slides that increase the overall surface area. A high surface area corresponds to a higher number of binding sites, and therefore a more sensitive system. The work done has shown that slides may be successfully coated in order to potentially improve the detection system.


Three-Dimensional Ideal Gas Reference State Based Energy Function, Avdesh Mishra May 2015

Three-Dimensional Ideal Gas Reference State Based Energy Function, Avdesh Mishra

University of New Orleans Theses and Dissertations

Energy functions are found to be a key of protein structure prediction. In this work, we propose a novel 3-dimensional energy function based on hydrophobic-hydrophilic properties of amino acid where we consider at least three different possible interaction of amino acid in a 3-dimensional sphere categorized as hydrophilic versus hydrophilic, hydrophobic versus hydrophobic and hydrophobic versus hydrophilic. Each of these interactions are governed by a 3-dimensional parameter alpha used to model the interaction and 3-dimensional parameter beta used to model weight of contribution. We use Genetic Algorithm (GA) to optimize the value of alpha, beta and Z-score. We obtain three …


Evaluation Of The Signature Molecular Descriptor With Blosum62 And An All-Atom Description For Use In Sequence Alignment Of Proteins, Lindsay M. Aichinger Jan 2015

Evaluation Of The Signature Molecular Descriptor With Blosum62 And An All-Atom Description For Use In Sequence Alignment Of Proteins, Lindsay M. Aichinger

Williams Honors College, Honors Research Projects

This Honors Project focused on a few aspects of this topic. The second is comparing the molecular signature kernels to three of the BLOSUM matrices (30, 62, and 90) to test the accuracy of the mathematical model. The kernel matrix was manipulated in order to improve the relationship by focusing on side groups and also by changing how the structure was represented in the matrix by increasing the initial height distance from the central atom (Height 1 and Height 2 included).

There were multiple design constraints for this project. The first was the comparison with the BLOSUM matrices (30, 62, …


Expression, Production, And Purification Of Novel Therapeutic Proteins, Mckinzie Shea Fruchtl May 2013

Expression, Production, And Purification Of Novel Therapeutic Proteins, Mckinzie Shea Fruchtl

Graduate Theses and Dissertations

Interest in the production of recombinant proteins consisting of collagen binding domain (CBD) fused to a bioactive material has increased due to the targeting/attachment capabilities of CBD. For example, CBD fusions can be applied to the reversing of bone density loss and the repair of the eardrum, specifically, by choosing an appropriate fusion partner (parathyroid hormone or epidermal growth factor). The production of CBD fusions was examined using batch and fed-batch culturing of Escherichia coli to express the fusion proteins, and affinity chromatography to isolate the final product.

Different medium formulations, feeding strategies, and induction methods were tested in order …


Capillary And Microchip Electrophoresis For The Monitoring Of Disease Causing Amyloid Proteins, Elizabeth Nancy Pryor Dec 2012

Capillary And Microchip Electrophoresis For The Monitoring Of Disease Causing Amyloid Proteins, Elizabeth Nancy Pryor

Graduate Theses and Dissertations

The detection of oligomers and aggregates formed by two amyloid proteins, insulin and amyloid-beta (AB), is of particular importance due to the role which these species play in Diabetes and Alzheimer's disease, respectively. However, existing techniques are limited in the ability to detect insulin and AB; oligomers due to the fact that these early aggregates are transient, present at low concentrations, and difficult to isolate. Improvements must be made to existing techniques or alternative techniques must be explored in order to identify and quantify the size of these oligomeric and aggregate species without disrupting their structure.

Capillary and microchip electrophoresis …


Capturing More Light: Phycobilisome Characterization For Increased Hydrogen Production Efficiency, Paul Abraham Willard May 2012

Capturing More Light: Phycobilisome Characterization For Increased Hydrogen Production Efficiency, Paul Abraham Willard

Masters Theses

Alternative energy and biofuels are a growing area of research. The demand for more and clean energy is ever increasing, but the current technology is inefficient, expensive, and incapable of meeting the demands of the current market. Hydrogen is a potential future fuel, as it is both clean and renewable, but its formation through conventional means is costly and inefficient. Photosynthesis can be utilized for the formation of hydrogen, which can then serve as a convenient and renewable biofuel. Photosynthetic hydrogen evolution is observed in vitro, but the current photosystem design is not very versatile and optimized to use …


Temperature Influence And Heat Management Requirements Of Microalgae Cultivation In Photobioreactors, Thomas Hagen Mehlitz Feb 2009

Temperature Influence And Heat Management Requirements Of Microalgae Cultivation In Photobioreactors, Thomas Hagen Mehlitz

Master's Theses

Microalgae are considered one of the most promising feedstocks for biofuel production for the future. The most efficient way to produce vast amounts of algal biomass is the use of closed tubular photobioreactors (PBR). The heat requirement for a given system is a major concern since the best algae growth rates are obtained between 25-30 °C, depending on the specific strain. A procedure to determine temperature influence on algal growth rates was developed for a lab-scale PBR system using the species Chlorella. A maximum growth rate of 1.44 doublings per day at 29 °C (optimal temperature) was determined. In addition, …