Open Access. Powered by Scholars. Published by Universities.®

Mechanics of Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

1,339 Full-Text Articles 2,696 Authors 429,663 Downloads 80 Institutions

All Articles in Mechanics of Materials

Faceted Search

1,339 full-text articles. Page 56 of 57.

Impact Of Elliptical Trainer Ergonomic Modifications On Perceptions Of Safety, Comfort, Workout, And Usability For People With Physical Disabilities And Chronic Conditions, Judith M. Burnfield, Yu Shu, Thad W. Buster, Adam P. Taylor, Carl A. Nelson 2011 Madonna Rehabilitation Hospital

Impact Of Elliptical Trainer Ergonomic Modifications On Perceptions Of Safety, Comfort, Workout, And Usability For People With Physical Disabilities And Chronic Conditions, Judith M. Burnfield, Yu Shu, Thad W. Buster, Adam P. Taylor, Carl A. Nelson

Department of Mechanical and Materials Engineering: Faculty Publications

Background The popularity of elliptical training has grown in rehabilitation, fitness, and home settings as a means for improving fitness and walking, yet many people with physical disabilities and chronic conditions experience difficulties when trying to use elliptical trainers.

Objective The purpose of this study was to compare, for people with disabilities and chronic conditions, perceptions of safety, comfort, workout, and usability of 4 elliptical trainers before and after the development of a set of low-cost adaptations.

Design This study was a quasi-experimental repeated-measures investigation.

Methods Twenty adults with diverse medical conditions and functional abilities evaluated 4 elliptical trainers for …


Use Of Environmental Scanning Electron Microscopy For In Situ Observation Of Interaction Of Cells With Micro- And Nanoprobes, Alexander Goponenko, B. J. Boyle, K. I. Jahan, Maxim V. Gerashchenko, Dmitri E. Fomenko, Vadim N. Gladyshev, Yuris A. Dzenis 2011 University of Nebraska-Lincoln

Use Of Environmental Scanning Electron Microscopy For In Situ Observation Of Interaction Of Cells With Micro- And Nanoprobes, Alexander Goponenko, B. J. Boyle, K. I. Jahan, Maxim V. Gerashchenko, Dmitri E. Fomenko, Vadim N. Gladyshev, Yuris A. Dzenis

Department of Mechanical and Materials Engineering: Faculty Publications

Precision intracellular sensing, probing and manipulation offer unprecedented opportunities for advances in biological sciences. Next-generation ultra-fine probes will be capable of targeting individual cell organelles. Development of such probes as well as probes capable of penetrating through tough cell walls requires detailed knowledge of cell-probe interaction. This Letter evaluated the applicability of environmental scanning electron microscopy (ESEM) for cell and cell-probe interaction imaging. Several types of cells (plant and yeast cells as well as mouse spermatozoa) were successfully imaged in their natural state, with mouse spermatozoa observed by ESEM for the first time. Computerized stage applied to image was tough …


Modeling Of Solvent Evaporation From Polymer Jets In Electrospinning, Xiang-Fa Wu, Yury Salkovskiy, Yuris A. Dzenis 2011 University of Nebraska–Lincoln

Modeling Of Solvent Evaporation From Polymer Jets In Electrospinning, Xiang-Fa Wu, Yury Salkovskiy, Yuris A. Dzenis

Department of Mechanical and Materials Engineering: Faculty Publications

Solvent evaporation plays a critical role in nanofiber formation in electrospinning. Here, we present a nonlinear mass diffusion-transfer model describing the drying process in dilute polymer solution jets. The model is used to predict transient solvent concentration profiles in polyacrylonitrile/ N,N-dimethylformamide (PAN/DMF) jets with the initial radii ranging from 50µm down to 100 nm. Numerical simulations demonstrate high transient inhomogeneity of solvent concentration over the jet cross-section in microscopic jets. The degree of inhomogeneity decreases for finer, submicron jets. The simulated jet drying time decreases rapidly with the decreasing initial jet radius, from seconds for microjets to single milliseconds for …


Variable Block Size Motion Compensation In The Redundant Wavelet Domain, Ahmed Abdelgadir Suliman 2011 North Carolina Agricultural and Technical State University

Variable Block Size Motion Compensation In The Redundant Wavelet Domain, Ahmed Abdelgadir Suliman

Dissertations

Video is one of the most powerful forms of multimedia because of the extensive information it delivers. Video sequences are highly correlated both temporally and spatially, a fact which makes the compression of video possible. Modern video systems employ motion estimation and motion compensation (ME/MC) to de-correlate a video sequence temporally. ME/MC forms a prediction of the current frame using the frames which have been already encoded. Consequently, one needs to transmit the corresponding residual image instead of the original frame, as well as a set of motion vectors which describe the scene motion as observed at the encoder. The …


Reverse Logic - Safety Of Spent Nuclear Fuel Disposal, Antti Lempinen, Marianne Silvan-Lempinen 2010 Åbo Akademi

Reverse Logic - Safety Of Spent Nuclear Fuel Disposal, Antti Lempinen, Marianne Silvan-Lempinen

Antti Lempinen

No abstract provided.


Effect Of Moisture Absorption On The Sinter Quality Of Central Solenoid (Cs) Coil Pack, Zeshaan Sher Mohammed 2010 University of Tennessee - Knoxville

Effect Of Moisture Absorption On The Sinter Quality Of Central Solenoid (Cs) Coil Pack, Zeshaan Sher Mohammed

Masters Theses

Fusion energy has been said to be the solution to all the world’s energy problems. The International Thermonuclear Experimental Reactor (ITER) is the flagship project to demonstrate the feasibility of fusion energy. The Central Solenoid (CS), an important component of the reactor, is needed to induce plasma current, initiate, ramp-up, ramp-down, and sustain plasma in a very controlled manner. In order to achieve this, the CS coil packs must be manufactured under controlled conditions. The CS conductor is an advanced cable-in-conduit Nb3Sn superconductor. The CS cable will be made in long continuous sections but with thousands of meter of cable …


Processing And Composition Effects On The Fracture Behavior Of Spray-Formed 7xxx Series Al Alloys, Mala M. Sharma, Constance W. Ziemian, Timothy J. Eden 2010 Bucknell University

Processing And Composition Effects On The Fracture Behavior Of Spray-Formed 7xxx Series Al Alloys, Mala M. Sharma, Constance W. Ziemian, Timothy J. Eden

Faculty Journal Articles

The fracture properties of high-strength spray-formed Al alloys were investigated, with consideration of the effects of elemental additions such as zinc,manganese, and chromium and the influence of the addition of SiC particulate. Fracture resistance values between 13.6 and 25.6 MPa (m)1/2 were obtained for the monolithic alloys in the T6 and T7 conditions, respectively. The alloys with SiC particulate compared well and achieved fracture resistance values between 18.7 and 25.6 MPa (m)1/2. The spray-formed materials exhibited a loss in fracture resistance (KI) compared to ingot metallurgy 7075 alloys but had an improved
performance compared to high-solute powder …


Anomalous Loss Of Toughness Of Work Toughened Polycarbonate, Shawn E. Meagher 2010 University of Nebraska-Lincoln

Anomalous Loss Of Toughness Of Work Toughened Polycarbonate, Shawn E. Meagher

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Glassy polymers such as polycarbonate (PC) can be toughened through compressive plastic deformation. The increase in toughness is substantial, showing as much as a fifteen fold increase in the amount of dissipated energy during failure for samples compressed to 50% plastic strain. This toughness increase can be reversed through thermal aging at temperatures below the glass transition temperature (Tg = 147°C).

The combined effect of plastic compression and thermal aging has been studied using Charpy, Single Edge Notch Bending (SENB), and Compact Tension (CT) tests. The tests mapped the response of samples cut along different orientations relative to the …


Deformation Waves In Microstructured Materials: Theory And Numerics, Juri Engelbrecht, Arkadi Berezovski, Mihhail Berezovski 2010 Tallinn University of Technology

Deformation Waves In Microstructured Materials: Theory And Numerics, Juri Engelbrecht, Arkadi Berezovski, Mihhail Berezovski

Publications

A linear model of the microstructured continuum based on Mindlin theory is adopted which can be represented in the framework of the internal variable theory. Fully coupled systems of equations for macro-motion and microstructure evolution are represented in the form of conservation laws. A modification of wave propagation algorithm is used for numerical calculations. Results of direct numerical simulations of wave propagation in periodic medium are compared with similar results for the continuous media with the modelled microstructure. It is shown that the proper choice of material constants should be made to match the results obtained by both approaches


Methods For Characterizing Mechanical Properties Of Wood Cell Walls Via Nanoindentation, Yujie Meng 2010 Department of Forestry, Wildlife & Fisheries

Methods For Characterizing Mechanical Properties Of Wood Cell Walls Via Nanoindentation, Yujie Meng

Masters Theses

Nanoindentation is a method of contacting a material whose mechanical properties are unknown with another material whose properties are known. Nanoindentation has the advantage of being able to probe a material’s microstructure while being sensitive enough to detect variations in mechanical properties. However, nanoindentation has some limitations as a testing technique due to the specific formation and structure of some biomaterials. The main objective of this research is to identify any factors that influence the nanoindentation measurement of wood cell walls (a typical biomaterial).

The function of the embedding media in describing the properties of wood cells is poorly understood. …


Diffuse Ultrasonic Scattering In Advanced Composites, Christer Stenström 2010 University of Nebraska-Lincoln

Diffuse Ultrasonic Scattering In Advanced Composites, Christer Stenström

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Non destructive testing (NDT) is a noninvasive technique used for characterization and inspection of the integrity of objects. NDT is an important tool for research, manufacturing monitoring and in-service inspections. Ultrasonic testing is the most used NDT technique, which for advanced composites can identify several types of defects, like delamination and interlaminar cracks. Diffuse ultrasonics has shown to be able to extract information at the microscale of metals and therefore it is believed it can be used for advanced composites to extract microstructural information, i.e. at the level of fibers.

In this thesis, diffuse ultrasonic methods, together with spatial variance …


Characterization, Modeling, And Consequences Of The Development During Plastic Flow Of Large Anisotropy In The Wave-Speeds, Quentin Fichot 2010 University of Nebraska – Lincoln

Characterization, Modeling, And Consequences Of The Development During Plastic Flow Of Large Anisotropy In The Wave-Speeds, Quentin Fichot

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

There is a substantial change in the anisotropy of some glassy polymers when they are subjected to large plastic deformations. The most pronounced case probably is seen in polycarbonate (PC), which is a tough thermoplastic used for many structural applications, including as a protective transparent armor for such applications as bulletproof glass. This development of anisotropy in the elastic response can be of the same order as the applied strains, and, therefore, becomes important in problems that show substantial plastic flow. In spite of this, this characteristic of glassy polymers has not been included in the current models. We propose …


Elements Of Study On Dynamic Materials, Marine Rousseau, Gerard A. Maugin, Mihhail Berezovski 2010 Universite Pierre et Marie Curie

Elements Of Study On Dynamic Materials, Marine Rousseau, Gerard A. Maugin, Mihhail Berezovski

Publications

As a preliminary study to more complex situations of interest in small-scale technology, this paper envisages the elementary propagation properties of elastic waves in one-spatial dimension when some of the properties (mass density, elasticity) may vary suddenly in space or in time, the second case being of course more original. Combination of the two may be of even greater interest. Toward this goal, a critical examination of what happens to solutions at the crossing of pure space-like and time-like material discontinuities is given together with simple solutions for smooth transitions and numerical simulations in the discontinuous case. The effects on …


An Experimental Investigation Of Friction Bit Joining In Az31 Magnesium And Advanced High-Strength Automotive Sheet Steel, Rebecca Gardner 2010 Brigham Young University - Provo

An Experimental Investigation Of Friction Bit Joining In Az31 Magnesium And Advanced High-Strength Automotive Sheet Steel, Rebecca Gardner

Theses and Dissertations

Friction Bit Joining (FBJ) is a recently developed spot joining technology capable of joining dissimilar metals. A consumable bit cuts through the upper layer of metal to be joined, then friction welds to the lower layer. The bit then snaps off, leaving a flange. This research focuses on FBJ using DP980 or DP590 steel as the lower layer, AZ31 magnesium alloy as the top layer, and 4140 or 4130 steel as the bit material. In order to determine optimal settings for the magnesium/steel joints, experimentation was performed using a purpose-built computer controlled welding machine, varying factors such as rotational speeds, …


Design, Fabrication, Structural Testing, And Numerical Analysis Of A Small Scale Composite Wing, Jacob David Gaunt, Juan Carlos Flores, Vincent Andrew Perry 2010 California Polytechnic State University, San Luis Obispo

Design, Fabrication, Structural Testing, And Numerical Analysis Of A Small Scale Composite Wing, Jacob David Gaunt, Juan Carlos Flores, Vincent Andrew Perry

Aerospace Engineering

A small scale composite wing based on a design found on an experimental aircraft was designed, constructed, and tested dynamically and statically. The wing was constructed similarly to an experimental aircraft wing. The performed static test was intended to produce pure bending. Strain gages were used to measure strains on the wing structure. The strains were converted to stresses to aid in analysis. The static test results suggested that the wing was actually under torsion. Four structural modes were found from the static test. A finite element analysis model was made to compare experimental results to numerical analytical results. The …


Coupled Dem-Fem For Dynamic Analysis Of Granular Systems In Bending, Kitti Rattanadit 2010 University of Nebraska - Lincoln

Coupled Dem-Fem For Dynamic Analysis Of Granular Systems In Bending, Kitti Rattanadit

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Characterizing the dynamic behavior of granular materials is one of the great challenges in the mechanics of granular matter. Methods for evaluating the mechanical properties of granular matter have applications in a variety of industries, mining and geotechnical activities, defense and military operations. A coupled 2D Discrete Element Method-Finite Element Method (DEM-FEM) code, called "BobKit", is developed and implemented for analyzing the behavior of a 2D granular layer on top of an elastic beam under deforming (quasi-static) or vibrating (dynamic) of the beam. The explicit time-integration dynamic code is used to simulate quasi-static and dynamic bending of the granular layer …


Studies Of Dynamic Crack Propagation And Crack Branching With Peridynamics, Youn Doh Ha Ph.D., Florin Bobaru Ph.D. 2010 University of Nebraska at Lincoln

Studies Of Dynamic Crack Propagation And Crack Branching With Peridynamics, Youn Doh Ha Ph.D., Florin Bobaru Ph.D.

Department of Engineering Mechanics: Faculty Publications

In this paper we discuss the peridynamic analysis of dynamic crack branching in brittle materials and show results of convergence studies under uniform grid refinement (m-convergence) and under decreasing the peridynamic horizon (δ-convergence). Comparisons with experimentally obtained values are made for the crack-tip propagation speed with three different peridynamic horizons.We also analyze the influence of the particular shape of themicro-modulus function and of different materials (Duran 50 glass and soda-lime glass) on the crack propagation behavior. We show that the peridynamic solution for this problem captures all the main features, observed experimentally, of dynamic crack propagation and branching, as well …


Multiscale Transformation Field Analysis Of Progressive Damage In Fibrous Laminates, Yehia Bahei-El-Din, Ritesh Khire, Prabhat Hajela 2010 The British University in Egypt

Multiscale Transformation Field Analysis Of Progressive Damage In Fibrous Laminates, Yehia Bahei-El-Din, Ritesh Khire, Prabhat Hajela

Centre for Advanced Materials

As part of an ongoing effort to model uncertainty propagation across multiple scales in fibrous laminates, this paper presents a deterministic transformation field analysis for modeling damage progression under membrane forces and bending moments. In this approach, equivalent eigenstresses are computed in the phases and/or plies such that their respective stress components that satisfy the underlying failure criteria are reduced to zero. Superposition of the solutions found for the undamaged laminate under applied loads and under the eigenstress field provide the entire response. Failure criteria are based on stress averages in the fiber and matrix. Damage mechanisms considered are frictional …


Modified Sandwich Structures For Improved Impact Resistance Of Wind Turbine Blades, Yehia Bahei-El-Din, Mostafa Shazly, I. El-Habbal, Y. Elbahy 2010 The British University in Egypt

Modified Sandwich Structures For Improved Impact Resistance Of Wind Turbine Blades, Yehia Bahei-El-Din, Mostafa Shazly, I. El-Habbal, Y. Elbahy

Centre for Advanced Materials

Wind turbine blades are susceptible to damage due to fatigue as well as impact by flying objects and parts broken off failed blades of nearby wind towers. Localized, permanent compression of the foam core and delamination of the fibrous composite face sheets are typical damage modes and can lead to progressive structural failure. Sandwich structures modified by inclusion of flexible polyurethane (PU) layers within the cross section are examined under both impact and dynamic loads. Finite element models of sandwich structures with conventional and modified designs show that sandwich designs modified with PU interlayes exhibit reduced foam core crushing and …


Processing Of Zrb2-Zrc-Zrxsiy Ceramic By Reactive Metal Penetration, Nischel B. Maheswaraiah 2010 University of Texas at El Paso

Processing Of Zrb2-Zrc-Zrxsiy Ceramic By Reactive Metal Penetration, Nischel B. Maheswaraiah

Open Access Theses & Dissertations

The processing of ZrB2-ZrC-ZrxSiy composite by reactive metal penetration was investigated as a successor to the ZrB2-SiC composites for hypersonic vehicles application, which cannot be used for extended time at temperatures greater than 1600C due to formation of SiO and CO gases. Zirconium (Zr), zirconium disilicide (ZrSi2), and boron carbide (B4C) were reacted in graphite crucibles for 60, 120, 180, and 240 minutes. Microscopy and x-ray diffraction (XRD) deduced the formation of a heterogeneous microstructure of ZrB2-ZrC-ZrxSiy precipitates surrounded by a solidified Zr-Si melt. Unreacted boron carbide was observed in samples held at 1860C for 60 minutes and 120 minutes, …


Digital Commons powered by bepress