Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Monte Carlo

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 33

Full-Text Articles in Physics

High-Performance Computing In Covariant Loop Quantum Gravity, Pietropaolo Frisoni Dec 2023

High-Performance Computing In Covariant Loop Quantum Gravity, Pietropaolo Frisoni

Electronic Thesis and Dissertation Repository

This Ph.D. thesis presents a compilation of the scientific papers I published over the last three years during my Ph.D. in loop quantum gravity (LQG). First, we comprehensively introduce spinfoam calculations with a practical pedagogical paper. We highlight LQG's unique features and mathematical formalism and emphasize the computational complexities associated with its calculations. The subsequent articles delve into specific aspects of employing high-performance computing (HPC) in LQG research. We discuss the results obtained by applying numerical methods to studying spinfoams' infrared divergences, or ``bubbles''. This research direction is crucial to define the continuum limit of LQG properly. We investigate the …


Path Integral Monte Carlo For Entanglement In Bosonic Lattices At T = 0, Emanuel Casiano-Diaz May 2023

Path Integral Monte Carlo For Entanglement In Bosonic Lattices At T = 0, Emanuel Casiano-Diaz

Doctoral Dissertations

Path-Integral Monte Carlo Worm Algorithm is one of many Quantum Monte Carlo (QMC) methods that serve as powerful tools for the simulation of quantum many-body systems. Developed in the late 90’s, this algorithm has been used with great success to study a wide array of physical models where exact calculation of observables is not possible due to the exponential size of the Hilbert space. One type of systems that have eluded PIMC-WA implementation are lattice models at zero temperature, which are of relevance in experimental settings, such as in optical lattices of ultra-cold atoms. In this thesis, we develop a …


Gamma Calibration Of Scintillators For The Muon Scattering Experiment, Anne Gloria Flannery Apr 2023

Gamma Calibration Of Scintillators For The Muon Scattering Experiment, Anne Gloria Flannery

Theses and Dissertations

The MUon Scattering Experiment (MUSE) at the Paul Scherrer Institute seeks to measure the muon-proton and electron-proton elastic cross-sections in the same experiment by measuring the scattering angle of particles from a 115-160 MeV beam onto a liquid hydrogen target. The timing detectors, as well as several of other detectors in the experiment, are plastic scintillators. This document discusses a method for the energy calibration, using 208Tl, 22Na, and 88Y sources, signal attenuation, and hit-position reconstructions of various timing detectors, as well as their function in the experiment as a whole. This method involves first attaining the pulse-height …


Monte Carlo Simulation Of Thallium-Bromide Semiconductor Detector For Range Verification Of A Carbon Ion Radiotherapy Beam Through Prompt Gamma-Ray Detection, Peter Dimpfl Aug 2022

Monte Carlo Simulation Of Thallium-Bromide Semiconductor Detector For Range Verification Of A Carbon Ion Radiotherapy Beam Through Prompt Gamma-Ray Detection, Peter Dimpfl

UNLV Theses, Dissertations, Professional Papers, and Capstones

Thallium-Bromide is a semiconductor material which is well suited for photon detection. Composed of high atomic number elements and a high mass density of 7.56 g/cm3, TlBr has superb photon stopping power. External beam radiation therapy is an ever-changing environment with technology rapidly improving. With proton therapy facilities becoming more widely available, and carbon ion facilities showcasing the benefits of carbon ion radiation therapy, there is an industry need toprovide accurate dosimetric treatment plans to verify patients are receiving proper care. Current clinical practices apply safety margins to clinical target volumes to safe treatment. Through research to improve detection techniques, …


The Effect Of Interfacial Morphology On The Magnetic And Magnetocaloricproperties Of Ferromagnetic Nanoparticles With Core-Shell Geometry: A Montecarlo Study, Yusuf Yüksel Jan 2022

The Effect Of Interfacial Morphology On The Magnetic And Magnetocaloricproperties Of Ferromagnetic Nanoparticles With Core-Shell Geometry: A Montecarlo Study, Yusuf Yüksel

Turkish Journal of Physics

Within the framework of Monte Carlo simulations, we investigate the magnetic and magnetocaloric properties of a nanocomposite particle composed of ferromagnetic core and shell layers. We found that isothermal magnetic entropy change may exhibit two peaks associated to two different phase transitions of the core and shell layers. We paid particular attention to the microscopic details of the core/shell interface. Our results suggest that for the large values of the interface exchange coupling, the full width at half maximum is expanded at the expense of the low temperature peak of isothermal entropy change $ \Delta S_{M} $ whereas the high …


A Review Of Monte Carlo Methods And Their Application In Medical Physics For Simulating Radiation Transport, Joe Shields Jan 2022

A Review Of Monte Carlo Methods And Their Application In Medical Physics For Simulating Radiation Transport, Joe Shields

Honors Theses and Capstones

Monte Carlo methods are used to calculate statistical behavior through the use of random number generators and probability density functions. They have been used extensively in medical physics for research in radiotherapy, designing technology, dosimetry, and advanced clinical applications. This paper provides a background on Monte Carlo methods and a review of radiation therapy physics and dosimetry. Additionally, there is a discussion of the different ways Monte Carlo methods are used in medical physics as well as a review of current research related to Monte Carlo methods. The final portion of this paper contains my own Monte Carlo simulation using …


Population Annealing: Analysis, Optimization And Application To Glassy Systems, Christopher A. Amey Jun 2021

Population Annealing: Analysis, Optimization And Application To Glassy Systems, Christopher A. Amey

Doctoral Dissertations

Glasses are physical systems that lack structural order and exhibit extremely slow dynamics, which makes them challenging to study. In this thesis we apply Monte Carlo methods to two distinct glassy systems: the 3D Edwards-Anderson spin glass and a binary hard sphere fluid. While significant progress has been made on theoretical and experimental fronts, much of our current understanding of glasses has come from numerical simulations. Standard Monte Carlo techniques cannot be used to perform equilibrium simulations due to slow dynamics in the glassy regime. As a result, several specialized techniques have been developed in order to simulate such systems, …


Transient Behavior Of Drift And Ionization In Atmospheric Pressure Nitrogen Discharge, S. K. Dhali Jan 2021

Transient Behavior Of Drift And Ionization In Atmospheric Pressure Nitrogen Discharge, S. K. Dhali

Electrical & Computer Engineering Faculty Publications

The fluid models are frequently used to describe a non-thermal plasma such as a streamer discharge. The required electron transport data and rate coefficients for the fluid model are parametrized using the local field approximation (LFA) in first order models and the local-mean-energy approximation (LMEA) in second order models. We performed Monte Carlo simulations in Nitrogen gas with step changes in the E/N (reduced electric field) to study the behavior of the transport properties in the transient phase. During the transient phase of the simulation, we extract the instantaneous electron mean energy, which is different from the steady state mean …


Static And Dynamical Properties Of Multiferroics, Sayed Omid Sayedaghaee Dec 2020

Static And Dynamical Properties Of Multiferroics, Sayed Omid Sayedaghaee

Graduate Theses and Dissertations

Since the silicon industrial revolution in the 1950s, a lot of effort was dedicated to the research and development activities focused on material and solid-state sciences. As a result, several cutting-edge technologies are emerging including the applications of functional materials in the design and enhancement of novel devices such as sensors, highly capable data storage media, actuators, transducers, and several other types of electronic tools. In the last two decades, a class of functional materials known as multiferroics has captured significant attention because of providing a huge potential for new designs due to possessing multiple ferroic order parameters at the …


Monte Carlo Simulations Of Awkward Actions, David John Amdahl Dec 2020

Monte Carlo Simulations Of Awkward Actions, David John Amdahl

Physics & Astronomy ETDs

Time derivatives of scalar fields occur quadratically in textbook actions. A simple Legendre transformation turns the Lagrangian into a Hamiltonian that is quadratic in the momentum. The partition function over the momentum is Gaussian. Mean values of operators are basically euclidian path integrals of their classical counterparts with positive weight functions. Monte Carlo simulations can estimate such mean values. This familiar framework falls apart when the time derivatives do not occur quadratically. The Legendre transformation becomes difficult or so intractable that the Hamiltonian can’t be determined. Even if the Hamiltonian is found, it usually is so complicated that the partition …


Bayesian Analysis Of Single Molecule Fluorescence Microscopy Data, Mohamadreza Fazel Jul 2020

Bayesian Analysis Of Single Molecule Fluorescence Microscopy Data, Mohamadreza Fazel

Physics & Astronomy ETDs

The diffraction limit can be circumvent by creating and exploiting independent behaviors of the sample at lengths scale below the diffraction limit. In fluorescence microscopy, the independence arises from individual fluorescent labels switching between dark and fluorescence states. The fluorophores can then be localized employing the generated sparse image frames. Finally, the resulting list of coordinates is utilized to generate high resolution images or to gain quantitative insight into the underlying biological structures. Therefore image processing and post-processing are essential stages of SMLM techniques.

In this dissertation, Reversible Jump Markov Chain Monte Carlo was employed to implement Bayesian analysis of …


Calculating Elastic Properties Of Confined Simple Fluids, Christopher D. Dobrzanski May 2020

Calculating Elastic Properties Of Confined Simple Fluids, Christopher D. Dobrzanski

Dissertations

Confinement in nanoporous materials is known to affect many properties of the fluids confined within their pores. The elastic properties are no exception. This dissertation begins with an overview of the relevant literature on ways of obtaining elastic properties of confined fluids. It outlines some fundamental gaps in our understanding. The chapters following address some of these gaps in understanding elastic properties of the confined fluid, in particular, how the shape of the confining pore matters, how supercriticality effects the properties, how an equation of state designed for confined fluids can be used to calculate elastic properties, and if an …


Implementing A Self-Corrected Chemical Potential Scheme In Determinant Quantum Monte Carlo Simulations, Kevin Gordon Kleiner May 2019

Implementing A Self-Corrected Chemical Potential Scheme In Determinant Quantum Monte Carlo Simulations, Kevin Gordon Kleiner

Chancellor’s Honors Program Projects

No abstract provided.


Emergent Critical Properties In Liquid-Gas Transition And Single Dislocations In Solid He4, Max Yarmolinsky Feb 2019

Emergent Critical Properties In Liquid-Gas Transition And Single Dislocations In Solid He4, Max Yarmolinsky

Dissertations, Theses, and Capstone Projects

My research focuses on the analytical and numerical study of seemingly completely different systems - the classical critical point of the liquid-gas transition and a quantum topological defect (dislocation) in solid Helium-4. The unifying theme, though, is Emergence - the appearance of unexpected qualities at large distance and time scales in these systems. Our results resolve the long standing controversy about the nature of the liquid-gas criticality by showing with high confidence that it is the same as that of Ising ferromagnet. In solid 4He, a quantum superclimbing dislocation, which is expected to be violating space-time symmetry according to …


Utilizing Log Files For Treatment Planning And Delivery Qa In Radiotherapy, Carl W. Stanhope Jan 2019

Utilizing Log Files For Treatment Planning And Delivery Qa In Radiotherapy, Carl W. Stanhope

Wayne State University Theses

Purpose: Monte Carlo-based log file quality assurance (LF-MC QA) is investigated as an alternative method to phantom-based patient-specific quality assurance in radiotherapy (e.g. ArcCHECK QA (AC QA)).

Methods: First, the shortcomings of AC QA were investigated. The sensitivity dependence of ArcCHECK diodes on dose rate (in-field) and energy (primarily out-of-field) was quantified. LF-MC QA was then analyzed on the phantom geometry. Planned (‘Plan’) and LF-reconstructed CS and MC doses were compared with each other and AC measurement via statistical (mean ± StdDev(σ)) and gamma analyses to isolate dosimetric uncertainties and quantify the relative accuracies of AC QA and LF-MC QA. …


Computational Modeling Of Radiation Interactions With Molecular Nitrogen, Tyler Reese Dec 2018

Computational Modeling Of Radiation Interactions With Molecular Nitrogen, Tyler Reese

Dissertations

The ability to detect radiation through identifying secondary effects it has on its surrounding medium would extend the range at which detections could be made and would be a valuable asset to many industries. The development of such a detection instrument requires an accurate prediction of these secondary effects. This research aims to improve on existing modeling techniques and help provide a method for predicting results for an affected medium in the presence of radioactive materials. A review of radioactivity and the interactions mechanisms for emitted particles as well as a brief history of the Monte Carlo Method and its …


Emergent Phenomena In Quantum Critical Systems, Kun Chen Jul 2018

Emergent Phenomena In Quantum Critical Systems, Kun Chen

Doctoral Dissertations

A quantum critical point (QCP) is a point in the phase diagram of quantum matter where a continuous phase transition takes place at zero temperature. Low-dimensional quantum critical systems are strongly correlated, therefore hosting nontrivial emergent phenomena. In this thesis, we first address two decades-old problems on quantum critical dynamics. We then reveal two novel emergent phenomena of quantum critical impurity problems. In the first part of the thesis, we address the linear response dynamics of the $(2+1)$-dimensional $O(2)$ quantum critical universality class, which can be realized in the ultracold bosonic system near the superfluid (SF) to Mott insulator (MI) …


Development Of A Slab-Based Monte Carlo Proton Dose Algorithm With A Robust Material-Dependent Nuclear Halo Model, John Wesley Chapman Jr Jun 2018

Development Of A Slab-Based Monte Carlo Proton Dose Algorithm With A Robust Material-Dependent Nuclear Halo Model, John Wesley Chapman Jr

LSU Doctoral Dissertations

Pencil beam algorithms (PBAs) are often utilized for dose calculation in proton therapy treatment planning because they are fast and accurate under most conditions. However, as discussed in Chapman et al (2017), the accuracy of a PBA can be limited under certain conditions because of two major assumptions: (1) the central-axis semi-infinite slab approximation; and, (2) the lack of material dependence in the nuclear halo model. To address these limitations, we transported individual protons using a class II condensed history Monte Carlo and added a novel energy loss method that scaled the nuclear halo equation in water to arbitrary geometry. …


Fast Monte Carlo Simulations For Quality Assurance In Radiation Therapy, Yuhe Wang Dec 2017

Fast Monte Carlo Simulations For Quality Assurance In Radiation Therapy, Yuhe Wang

Arts & Sciences Electronic Theses and Dissertations

Monte Carlo (MC) simulation is generally considered to be the most accurate method for dose calculation in radiation therapy. However, it suffers from the low simulation efficiency (hours to days) and complex configuration, which impede its applications in clinical studies. The recent rise of MRI-guided radiation platform (e.g. ViewRay’s MRIdian system) brings urgent need of fast MC algorithms because the introduced strong magnetic field may cause big errors to other algorithms. My dissertation focuses on resolving the conflict between accuracy and efficiency of MC simulations through 4 different approaches: (1) GPU parallel computation, (2) Transport mechanism simplification, (3) Variance reduction, …


Diluted Magnetic Semiconductor: Structure, Size And Shape, And Magnetic Properties, Muhammet Arucu Jan 2017

Diluted Magnetic Semiconductor: Structure, Size And Shape, And Magnetic Properties, Muhammet Arucu

Turkish Journal of Physics

In dilute magnetic metallic alloys, spin exchange interactions among transition metal ions at the ZnO structure cause changes in the magnetic properties of the nanocrystals depending on size and shape. The effect of size and shape on the structural and magnetic properties of semiconductors, using atomistic spin calculations, is the main topic of this study. When the size of the system decreases to a few nanometers, stability is not observed as a result of the large size. We theoretically examine the magnetic properties of CoZnO materials according to size and shape effects using the Monte Carlo method and the Heisenberg …


Assessing The Potential Clinical Impact Of Variable Biological Effectiveness In Proton Radiotherapy, Christopher R. Peeler Ph.D. Dec 2016

Assessing The Potential Clinical Impact Of Variable Biological Effectiveness In Proton Radiotherapy, Christopher R. Peeler Ph.D.

Dissertations & Theses (Open Access)

It has long been known that proton radiotherapy has an increased biological effectiveness compared to traditional x-ray radiotherapy. This arises from the clustered nature of DNA damage produced by the energy deposition of protons along their tracks in medium. This effect is currently quantified in clinical settings by assigning protons a relative biological effectiveness (RBE) value of 1.1 corresponding to 10% increased effectiveness compared to photon radiation. Numerous studies have shown, however, that the RBE value of protons is variable and can deviate substantially from 1.1, but experimental data on RBE and clinical evidence of its variability remains limited.

The …


Force Field Development With Gomc A Fast New Monte Carlo Molecular Simulation Code, Jason Richard Mick Jan 2016

Force Field Development With Gomc A Fast New Monte Carlo Molecular Simulation Code, Jason Richard Mick

Wayne State University Dissertations

In this work GOMC (GPU Optimized Monte Carlo) a new fast, flexible, and free molecular Monte Carlo code for the simulation atomistic chemical systems is presented. The results of a large Lennard-Jonesium simulation in the Gibbs ensemble is presented. Force fields developed using the code are also presented. To fit the models a quantitative fitting process is outlined using a scoring function and heat maps. The presented n-6 force fields include force fields for noble gases and branched alkanes. These force fields are shown to be the most accurate LJ or n-6 force fields to date for these compounds, capable …


Development Of A New Independent Monte Carlo Dose Calculation Quality Assurance Audit Tool For Clinical Trials, Austin M. Faught Aug 2014

Development Of A New Independent Monte Carlo Dose Calculation Quality Assurance Audit Tool For Clinical Trials, Austin M. Faught

Dissertations & Theses (Open Access)

Introduction: Commercially available treatment planning systems (TPS) may use a number of different radiation dose calculation algorithms during the planning process. The Radiological Physics Center (RPC), tasked with ensuring clinically comparable and consistent dose delivery amongst institutions participating in NCI funded multi-institutional clinical trials, has traditionally relied upon measurements to achieve this objective. As a supplement to the tools used by the RPC, an independent dose calculation tool is needed to determine patient dose distributions in three dimensions so as to act as a quality assurance tool for the dose calculations.

Methods: Multiple source models representing the output of Elekta …


Monte Carlo Simulations Of Atmospheric Loss By Stellar Winds From Exoplanets, Daniel P. Violette May 2014

Monte Carlo Simulations Of Atmospheric Loss By Stellar Winds From Exoplanets, Daniel P. Violette

University Scholar Projects

Hot Jupiters are a class of extra-solar planets. Massive gas giants on the same size scale as Jupiter, they orbit their host stars closely. This proximity results in large stellar winds capable of stripping away a planet’s atmosphere. Developing a more complete understanding of atmospheric mass loss and evolution in planetary bodies is critical, and Hot Jupiter systems are accessible analogues.

This project will seek to create a computational model capable of estimating mass loss rates due to stellar winds. A Monte Carlo method is utilized to take an ensemble of single, high-energy energetic neutral particles, produced by kilo-electronvolt stellar …


Monte Carlo Simulations Of Atmospheric Loss By Stellar Winds From Exoplanets, Daniel Violette May 2014

Monte Carlo Simulations Of Atmospheric Loss By Stellar Winds From Exoplanets, Daniel Violette

Honors Scholar Theses

Hot Jupiters are a class of extra-solar planets. Massive gas giants on the same size scale as Jupiter, they orbit their host stars closely. This proximity results in large stellar winds capable of stripping away a planet’s atmosphere. Developing a more complete understanding of atmospheric mass loss and evolution in planetary bodies is critical, and Hot Jupiter systems are accessible analogues.

This project will seek to create a computational model capable of estimating mass loss rates due to stellar winds. A Monte Carlo method is utilized to take an ensemble of single, high-energy energetic neutral particles, produced by kilo-electronvolt stellar …


Radiogenic Second Cancer Risk Differences In Female Hodgkin Lymphoma Patients Treated With Proton Versus Photon Radiotherapies, Kenneth L. Homann Dec 2013

Radiogenic Second Cancer Risk Differences In Female Hodgkin Lymphoma Patients Treated With Proton Versus Photon Radiotherapies, Kenneth L. Homann

Dissertations & Theses (Open Access)

Hodgkin Lymphoma (HL) is the most common cancer diagnosis of young adults in the United States. Advances in curative treatments for HL, including the use of photon radiation therapy (RT) techniques, have increased 10 year survival rates to approximately 90% among young patients. These RT treatments, however, contribute to an increased incidence of radiogenic second cancer (RSC) formation to the healthy tissue surrounding the tumor volume relative to the general population. These RSCs are the leading cause of death among long-term HL survivors. Proton therapy has been shown to reduce the therapeutic dose, and therefore, the risk of developing a …


Replica Exchange Monte Carlo Simulations Of The Ising Spin Glass: Static And Dynamic Properties, Burcu Yucesoy Sep 2013

Replica Exchange Monte Carlo Simulations Of The Ising Spin Glass: Static And Dynamic Properties, Burcu Yucesoy

Open Access Dissertations

Spin glasses have been the subject of intense study and considerable controversy for decades, and the low-temperature phase of short-range spin glasses is still poorly understood. Our main goal is to improve our understanding in this area and find an answer to the following question: Are there only a single pair or a countable infinity of pure states in the low temperature phase of the EA spin glass? To that aim we first start by introducing spin glasses and provide a brief history of their research, then proceed to describe our method of simulation, the parallel tempering Monte Carlo algorithm. …


The Impact Of Lateral Electron Disequilibrium On Stereotactic Body Radiation Therapy Of Lung Cancer, Brandon Disher Aug 2013

The Impact Of Lateral Electron Disequilibrium On Stereotactic Body Radiation Therapy Of Lung Cancer, Brandon Disher

Electronic Thesis and Dissertation Repository

Stereotactic Body Radiation Therapy (SBRT) is an effective treatment option for patients with inoperable early-stage lung cancer. SBRT uses online image-guidance technology [e.g. cone-beam CT (CBCT)] to focus small-fields of high energy x-rays onto a tumour to deliver ablative levels of radiation dose (e.g. 54 Gy) in a few treatment fractions (e.g. 3). For the combination of these treatment parameters and a low density lung, lateral electron disequilibrium (LED) can potentially occur, reducing lung and tumour doses. The goal of this thesis was to determine the impact of LED on stereotactic body radiation therapy for lung cancer.

The effect of …


Efficiency Of Parallel Tempering For Ising Systems, Stephan Burkhardt Jan 2010

Efficiency Of Parallel Tempering For Ising Systems, Stephan Burkhardt

Masters Theses 1911 - February 2014

The efficiency of parallel tempering Monte Carlo is studied for a two-dimensional Ising system of length L with N=L^2 spins. An external field is used to introduce a difference in free energy between the two low temperature states.

It is found that the number of replicas R_opt that optimizes the parallel tempering algorithm scales as the square root of the system size N. For two symmetric low temperature states, the time needed for equilibration is observed to grow as L^2.18. If a significant difference in free energy is present between the two states, this changes to L^1.02.

It is therefore …


Integration Of Vmc++ Into A Commercial Treatment Planning System, Joseph Kingsley Gardner Jan 2005

Integration Of Vmc++ Into A Commercial Treatment Planning System, Joseph Kingsley Gardner

Theses and Dissertations

Recently, there has been interest to integrate VMC++ into the commercial treatment planning system at VCU as another Monte Carlo code option, since it has been shown to increase efficiency dramatically without introducing a significant amount of systematic error. Also, independent validation of VMC++ for photon beams is of interest since this has not been performed previously in literature. This study included several tests required to integrate VMC++. Output factor normalization was performed and found to agree with experiment to within 1% for all field sizes except 1x1 cm2. Geometric validation was successful. Dosimetric validation was performed with respect to …