Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Path Integral Monte Carlo For Entanglement In Bosonic Lattices At T = 0, Emanuel Casiano-Diaz May 2023

Path Integral Monte Carlo For Entanglement In Bosonic Lattices At T = 0, Emanuel Casiano-Diaz

Doctoral Dissertations

Path-Integral Monte Carlo Worm Algorithm is one of many Quantum Monte Carlo (QMC) methods that serve as powerful tools for the simulation of quantum many-body systems. Developed in the late 90’s, this algorithm has been used with great success to study a wide array of physical models where exact calculation of observables is not possible due to the exponential size of the Hilbert space. One type of systems that have eluded PIMC-WA implementation are lattice models at zero temperature, which are of relevance in experimental settings, such as in optical lattices of ultra-cold atoms. In this thesis, we develop a …


Population Annealing: Analysis, Optimization And Application To Glassy Systems, Christopher A. Amey Jun 2021

Population Annealing: Analysis, Optimization And Application To Glassy Systems, Christopher A. Amey

Doctoral Dissertations

Glasses are physical systems that lack structural order and exhibit extremely slow dynamics, which makes them challenging to study. In this thesis we apply Monte Carlo methods to two distinct glassy systems: the 3D Edwards-Anderson spin glass and a binary hard sphere fluid. While significant progress has been made on theoretical and experimental fronts, much of our current understanding of glasses has come from numerical simulations. Standard Monte Carlo techniques cannot be used to perform equilibrium simulations due to slow dynamics in the glassy regime. As a result, several specialized techniques have been developed in order to simulate such systems, …


Emergent Phenomena In Quantum Critical Systems, Kun Chen Jul 2018

Emergent Phenomena In Quantum Critical Systems, Kun Chen

Doctoral Dissertations

A quantum critical point (QCP) is a point in the phase diagram of quantum matter where a continuous phase transition takes place at zero temperature. Low-dimensional quantum critical systems are strongly correlated, therefore hosting nontrivial emergent phenomena. In this thesis, we first address two decades-old problems on quantum critical dynamics. We then reveal two novel emergent phenomena of quantum critical impurity problems. In the first part of the thesis, we address the linear response dynamics of the $(2+1)$-dimensional $O(2)$ quantum critical universality class, which can be realized in the ultracold bosonic system near the superfluid (SF) to Mott insulator (MI) …