Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Plasma and Beam Physics

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 781 - 810 of 830

Full-Text Articles in Physics

Tabletop X-Ray Lasers, D. C. Eder, P. Amendt, L. B. Dasilva, R. A. London, B. J. Macgowan, D. L. Matthews, B. M. Penetrante, M. D. Rosen, S. C. Silks, Thomas D. Donnelly, R. W. Falcone, G. L. Strobel May 1994

Tabletop X-Ray Lasers, D. C. Eder, P. Amendt, L. B. Dasilva, R. A. London, B. J. Macgowan, D. L. Matthews, B. M. Penetrante, M. D. Rosen, S. C. Silks, Thomas D. Donnelly, R. W. Falcone, G. L. Strobel

All HMC Faculty Publications and Research

Details of schemes for two tabletop size x‐ray lasers that require a high‐intensity short‐pulse driving laser are discussed. The first is based on rapid recombination following optical‐field ionization. Analytical and numerical calculations of the output properties are presented. Propagation in the confocal geometry is discussed and a solution for x‐ray lasing in Li‐like N at 247 Å is described. Since the calculated gain coefficient depends strongly on the electron temperature, the methods of calculating electron heating following field ionization are discussed. Recent experiments aimed at demonstrating lasing in H‐like Li at 135 Å are discussed along with modeling results. The …


X-Rays From Microstructured Targets Heated By Femtosecond Lasers, S. P. Gordon, Thomas D. Donnelly, A. Sullivan, H. Hamster, R. W. Falcone Apr 1994

X-Rays From Microstructured Targets Heated By Femtosecond Lasers, S. P. Gordon, Thomas D. Donnelly, A. Sullivan, H. Hamster, R. W. Falcone

All HMC Faculty Publications and Research

We have demonstrated efficient conversion of ultrashort-pulse laser energy to x rays with energies above 1 keV, using laser-produced plasmas generated on a variety of microstructured surfaces. Lithographically produced grating targets generated 0.1 mJ of kilo-electron-volt x rays, and porous gold and aluminum targets emitted 1 mJ. This represents an improvement of a factor of 100 over flat targets. The K-shell emission spectrum of porous aluminum was composed primarily of heliumlike spectral lines.


The Effects Of Optical Feedback On Polarization Of Vertical Cavity Surface Emitting Lasers, Gregory J. Vansuch Dec 1993

The Effects Of Optical Feedback On Polarization Of Vertical Cavity Surface Emitting Lasers, Gregory J. Vansuch

Theses and Dissertations

Vertical Cavity Surface Emitting Lasers VCSELs are a type of semiconductor laser with a cavity oriented orthogonally to the planes of material growth. These lasers differ from conventional edge emitting lasers in several important ways. They have symmetric output beams and they are easily built into two dimensional arrays, making them very attractive as photonic components. The characteristic of interest in this thesis is polarization. While the asymmetric cavities of edge emitters exhibit a clear preference for light polarized in a particular direction, the cylindrically symmetric cavity of a VCSEL has no clear preference. Therefore, it should be relatively easy …


Glow-Discharge Enhanced Permeation Of Oxygen Through Silver, D. Wu, R. A. Outlaw, Robert L. Ash Jan 1993

Glow-Discharge Enhanced Permeation Of Oxygen Through Silver, D. Wu, R. A. Outlaw, Robert L. Ash

Mechanical & Aerospace Engineering Faculty Publications

The permeation of oxygen through Ag0.05Zr over the temperature range of 300-650°C under glow-discharge conditions has been studied and compared to the permeation of thermally dissociated molecular oxygen. A low-energy dc glow-discharge in O2 has been employed which produced approximately 10% atoms. The permeation rate during the glow discharge was found to be much higher (a factor of ∼10) than without the glow discharge. The small fraction of oxygen atoms generated appears to dominate the permeation because of much higher solution probabilities. Below 500°C, the activation energy for the permeation with glow discharge was found to be 15.5 kcal/mol …


A Study Of The Guiding Center Approximation, Qun Yao Jan 1993

A Study Of The Guiding Center Approximation, Qun Yao

Dissertations, Theses, and Masters Projects

A Hamiltonian treatment for the motion of a charged particle in a toroidal magnetic field is given. Assuming the plasma equilibrium, Boozer coordinates are used. The Hamiltonian of the exact trajectory is given in the guiding center coordinates. The higher order corrections to the standard drift Hamiltonian are derived. It is shown that the exact Hamiltonian depends on both the field strength and the shape of the magnetic surfaces (the metric of Boozer coordinates) while the standard drift Hamiltonian depends only on the field strength. The first order correction to the standard drift Hamiltonian, in gyroradius to system size, depends …


Erratum: "Temperature And Suction Effects On The Instability Of An Infinite Swept Attachment Line" [Physics Of Fluids A 4, 2008 (1992)], D. G. Lasseigne, T. L. Jackson, F. Q. Hu Jan 1993

Erratum: "Temperature And Suction Effects On The Instability Of An Infinite Swept Attachment Line" [Physics Of Fluids A 4, 2008 (1992)], D. G. Lasseigne, T. L. Jackson, F. Q. Hu

Mathematics & Statistics Faculty Publications

Erratum to:

Lasseigne, D. G., Jackson, T. L., & Hu, F. Q. (1992). Temperature and suction effects on the instability of an infinite swept attachment line. Physics of Fluids A: Fluid Dynamics, 4(9), 2008-2012. doi:10.1063/1.858370


Induced Mach Wave-Flame Interactions In Laminar Supersonic Fuel Jets, F. Q. Hu, T. L. Jackson, D. G. Lasseigne, C. E. Grosch Jan 1993

Induced Mach Wave-Flame Interactions In Laminar Supersonic Fuel Jets, F. Q. Hu, T. L. Jackson, D. G. Lasseigne, C. E. Grosch

Mathematics & Statistics Faculty Publications

A model problem is proposed to investigate the steady response of a reacting, compressible laminar jet to Mach waves generated by wavy walls in a channel of finite width. The model consists of a two-dimensional jet of fuel emerging into a stream of oxidizer which are allowed to mix and react in the presence of the Mach waves. The governing equations are taken to be the steady parabolized Navier-Stokes equations which are solved numerically. The kinetics is assumed to be a one-step, irreversible reaction of the Arrhenius type. Two important questions on the Mach wave-flame interactions are discussed: (i) how …


Absolute-Convective Instabilities And Their Associated Wave Packets In A Compressible Reacting Mixing Layer, F. Q. Hu, T. L. Jackson, D. G. Lasseigne, C. E. Grosch Jan 1993

Absolute-Convective Instabilities And Their Associated Wave Packets In A Compressible Reacting Mixing Layer, F. Q. Hu, T. L. Jackson, D. G. Lasseigne, C. E. Grosch

Mathematics & Statistics Faculty Publications

In this paper the transition from convective to absolute instability in a reacting compressible mixing layer with finite rate chemistry is examined. The reaction is assumed to be one step, irreversible, and of Arrhenius type. It is shown that absolute instability can exist for moderate heat release without backflow. The effects of the temperature ratio, heat release parameter, Zeldovich number, equivalence ratio, direction of propagation of the disturbances, and the Mach number on the transition value of the velocity ratio are given. The present results are compared to those obtained from the flame sheet model for the temperature using the …


A Numerical Study Of Wave Propagation In A Confined Mixing Layer By Eigenfunction Expansions, Fang Q. Hu Jan 1993

A Numerical Study Of Wave Propagation In A Confined Mixing Layer By Eigenfunction Expansions, Fang Q. Hu

Mathematics & Statistics Faculty Publications

It is well known that the growth rate of instability waves of a two-dimensional free shear layer is reduced greatly at supersonic convective Mach numbers. In previous works, it has been shown that new wave modes exist when the shear layers are bounded by a channel due to the coupling effect between the acoustic wave modes and the motion of the mixing layer. The present work studies the simultaneous propagation of multiple stability waves using numerical simulation. It is shown here that the coexistence of two wave modes in the flow field can lead to an oscillatory growth of disturbance …


Temperature And Suction Effects On The Instability Of An Infinite Swept Attachment Line, D. G. Lasseigne, T. L. Jackson, F. Q. Hu Jan 1992

Temperature And Suction Effects On The Instability Of An Infinite Swept Attachment Line, D. G. Lasseigne, T. L. Jackson, F. Q. Hu

Mathematics & Statistics Faculty Publications

It is known that the incompressible, infinite swept attachment line flow is unstable to streamwise disturbances that originate in the boundary layer when the cross-flow exceeds a critical magnitude. Furthermore, a small degree of suction at the surface has a significant stabilizing influence while a small degree of blowing has a considerable destabilizing influence. This paper investigates the stabilizing and destabilizing effects of, respectively, cooling or heating the plate and the competing or enhancing effects of suction or blowing. A nonorthogonal flow with respect to the attachment line is also considered by adding a component of shear to the mean …


Painleve Singularity Analysis Applied To Charged Particle Dynamics During Reconnection, Jay Walter Larson Jan 1992

Painleve Singularity Analysis Applied To Charged Particle Dynamics During Reconnection, Jay Walter Larson

Dissertations, Theses, and Masters Projects

For a plasma in the collisionless regime, test-particle modelling can lend some insight into the macroscopic behavior of the plasma, e.g conductivity and heating. A common example for which this technique is used is a system with electric and magnetic fields given by B = {dollar}\delta y{dollar}cx x + xcx y + {dollar}\gamma{dollar}cx z and E = {dollar}\epsilon{dollar}cx z, where {dollar}\delta{dollar}, {dollar}\gamma{dollar}, and {dollar}\epsilon{dollar} are constant parameters. This model can be used to model plasma behavior near neutral lines, ({dollar}\gamma{dollar} = 0), as well as current sheets ({dollar}\gamma{dollar} = 0, {dollar}\delta{dollar} = 0). The integrability properties of the particle motion …


Quasilinear Theory Of Laser-Plasma Interactions, Alastair John Neil Jan 1992

Quasilinear Theory Of Laser-Plasma Interactions, Alastair John Neil

Dissertations, Theses, and Masters Projects

The interaction of a high intensity laser beam with a plasma is generally susceptible to the filamentation instability due to nonuniformities in the laser profile. In ponderomotive filamentation high intensity spots in the beam expell plasma by ponderomotive force, lowering the local density, causing even more light to be focused into the already high intensity region. The result--the beam is broken up into a filamentary structure.;Several optical smoothing techniques have been proposed to eliminate this problem. In the Random Phase Plates (RPS) approach, the beam is split into a very fine scale, time-stationary interference pattern. The irregularities in this pattern …


Effect Of Magnetic And Density Fluctuations On The Propagation Of Lower Hybrid Waves In Tokamaks, George Vahala, Linda L. Vahala, Paul T. Bonoli Jan 1992

Effect Of Magnetic And Density Fluctuations On The Propagation Of Lower Hybrid Waves In Tokamaks, George Vahala, Linda L. Vahala, Paul T. Bonoli

Electrical & Computer Engineering Faculty Publications

Lower hybrid waves have been used extensively for plasma heating, current drive, and ramp-up as well as sawteeth stabilization, The wave kinetic equation for lower hybrid wave propagation is extended to include the effects of both magnetic and density fluctuations. This integral equation is then solved by Monte Carlo procedures for a toroidal plasma. It is shown that even for magnetic/density fluctuation levels on the order of 10-4, there are significant magnetic fluctuation effects on the wave power deposition into the plasma. This effect is quite pronounced if the magnetic fluctuation spectrum is peaked within the plasma. For …


Charge-State Equilibrium And Nonequilibrium Modeling Of The Carbon-Pellet Plasma Interaction, A. G. Elcashlan, G. A. Gerdin, L. L. Vahala, P. B. Parks Jan 1992

Charge-State Equilibrium And Nonequilibrium Modeling Of The Carbon-Pellet Plasma Interaction, A. G. Elcashlan, G. A. Gerdin, L. L. Vahala, P. B. Parks

Electrical & Computer Engineering Faculty Publications

Self-consistent equilibrium and nonequilibrium charge-state models are formulated for the spherical expansion of low-Z pellet vapor as an inviscid perfect gas of constant ratio of specific heats being heated volumetrically by the incident electrons of a thermonuclear plasma. The two models are found to be in agreement in the region where the ratio of the ionization length ζj to pellet radius rp is less than unity, but a single parameter, such as the magnitude of this ratio on the sonic surface, is insufficient to determine whether an equilibrium model will be valid for all regions of the ablatant …


Effect Of Fluctuations On Lower Hybrid Power Deposition And Hard X-Ray Detection, George Vahala, Linda L. Vahala, Paul T. Bonoli Jan 1992

Effect Of Fluctuations On Lower Hybrid Power Deposition And Hard X-Ray Detection, George Vahala, Linda L. Vahala, Paul T. Bonoli

Electrical & Computer Engineering Faculty Publications

The hard X-ray intensity radial profiles from lower hybrid current drive experiments are interpreted as being correlated with fluctuations in the bulk plasma. This view seems to be dictated by comparing the hard X-ray data for various n with the Monte Carlo solutions of the lower hybrid wave energy deposition on plasma electrons. Information on internal magnetic fluctuations may, under certain conditions, be unfolded from a nscan of the hard X-ray profiles.


Self-Consistent Determination Of Low-Za Pellet Ablation And Pellet Penetration, Linda L. Vahala, Glenn Gerdin, A. G. El Cashlan, Paul Parks Jan 1992

Self-Consistent Determination Of Low-Za Pellet Ablation And Pellet Penetration, Linda L. Vahala, Glenn Gerdin, A. G. El Cashlan, Paul Parks

Electrical & Computer Engineering Faculty Publications

The ablation dynamics of LiT pellets are solved self-consistently over a modest range of parameters using a surface dissociation model. The self-consistently determined parameters are then used to modify the standard low-Z pellet penetration codes. Since LiT pellets have certain advantages over carbon [in particular, Li conditioning of the walls and T for refueling a D-T reaction], the penetration of LiT into fusion plasmas is considered.


Electromagnetic Wave Scattering From Magnetic Fluctuations In Tokamaks, L. L. Vahala, G. Vahala, N. Bretz Jan 1992

Electromagnetic Wave Scattering From Magnetic Fluctuations In Tokamaks, L. L. Vahala, G. Vahala, N. Bretz

Electrical & Computer Engineering Faculty Publications

Cross sections are calculated for electromagnetic wave scattering and mode transformation from magnetic and density fluctuations in a homogeneous plasma. For the special case of scattering perpendicular to the magnetic field, density fluctuations scatter ordinary to ordinary and extraordinary to extraordinary modes-but cannot transform these modes. On the other hand, magnetic fluctuations perpendicular to the field can transform modes but cannot scatter on a single branch. For incident frequencies on the order of the electron plasma frequency or gyrofrequency, the cross sections for scattering and transformation due to field and density fluctuations have a similar value. Estimates are given for …


Electric Field Induced Emission As A Diagnostic Tool For Measurement Of Local Electric Field Strengths, A. N. Dharamsi, K. H. Schoenbach Jan 1991

Electric Field Induced Emission As A Diagnostic Tool For Measurement Of Local Electric Field Strengths, A. N. Dharamsi, K. H. Schoenbach

Bioelectrics Publications

The phenomenon of electric field induced (EFI) emission is examined in several diatomic and polyatomic molecules. The possibility of using this phenomenon as a diagnostic tool to measure, nonintrusively, the strength and direction of local electric fields in plasmas is discussed. An estimate of the EFI signal emitted in a typical application plasma is given. This yields a lower bound on the detector sensitivity necessary to exploit EFI emission in practical applications. It is concluded that, at present, the EFI signal could be measured by some very sensitive infrared detection schemes available. Current progress in infrared detector technology, if maintained, …


Double Tuned Cosine Coil For Nmr Imaging/Microscopy, Roger M. Hawk, Rao P. Gullapalli, Dikoma P. Shungu Jan 1991

Double Tuned Cosine Coil For Nmr Imaging/Microscopy, Roger M. Hawk, Rao P. Gullapalli, Dikoma P. Shungu

Journal of the Arkansas Academy of Science

The fabrication of a cosine coil having unevenly distributed struts is detailed. Placing the struts in such a manner enables a standing wave at the desired frequency and, hence, only one resonance frequency is obtained. This study details the fabrication of a cosine coil tuned to the LJ-7 frequency (77.76 MHz) and then double-tuned to the H-1 frequency (200.1 MHz) when operated at 4.7 Tesla. Double-tuning is attained by placing an LC trap in series with a capacitor used to single-tune the coil. Also, a method is suggested by which a cosine coil can be broadbanded in the lower frequency …


Lightning: A Complex Natural Phenomenon That Defies Simple Analysis, Mostafa Hemmati Jan 1991

Lightning: A Complex Natural Phenomenon That Defies Simple Analysis, Mostafa Hemmati

Journal of the Arkansas Academy of Science

No abstract provided.


Magnetic Field Strength Of Toroidal Plasma Equilibria, David Alan Garren Jan 1991

Magnetic Field Strength Of Toroidal Plasma Equilibria, David Alan Garren

Dissertations, Theses, and Masters Projects

The goal of nuclear fusion research is to confine a deuterium-tritium plasma at a sufficiently high temperature (15 keV) and density (3 $\times$ 10$\sp{20}$ m$\sp{-3}$) for a sufficient length of time (1 sec) to produce net fusion power. One means to attain the required plasma confinement is to embed the plasma within a magnetic field. The global structure of this magnetic field determines the variation of magnetic field strength within the surfaces of constant plasma pressure. This field strength variation in turn determines many of the stability and confinement properties of the plasma. This dissertation gives the first detailed exposition …


Completely Bootstrapped Tokamak, Richard Henry Weening Jan 1991

Completely Bootstrapped Tokamak, Richard Henry Weening

Dissertations, Theses, and Masters Projects

A fundamental requirement for the successful operation of a tokamak is the maintenance of a toroidal electric current within the tokamak plasma itself. Maintaining this internal plasma current can be a very difficult technological problem. In this work, a well-known but non-standard method for maintaining the tokamak current called the bootstrap effect is discussed. The bootstrap effect occurs when a fusion plasma is near thermonuclear conditions, and allows the tokamak to greatly amplify its electric current.;Because the bootstrap effect amplifies but does not create a plasma current, it has long been argued that a completely bootstrapped tokamak is not possible. …


Parametric Instability Of Supersonic Shear Layers Induced By Periodic Mach Waves, Fang Q. Hu, Christopher K. W. Tam Jan 1991

Parametric Instability Of Supersonic Shear Layers Induced By Periodic Mach Waves, Fang Q. Hu, Christopher K. W. Tam

Mathematics & Statistics Faculty Publications

It is suggested that parametric instability can be induced in a confined supersonic shear layer by the use of a periodic Mach wave system generated by a wavy wall. The existence of such an instability solution is demonstrated computationally by solving the Floquet system of equations. The solution is constructed by means of a Fourier-Chebyshev expansion. Numerical convergence is assured by using a very large number of Fourier and Chebyshev basis functions. The computed growth rate of the induced flow instability is found to vary linearly with the amplitude of the mach waves when the amplitude is not excessively large. …


Measurement Of Magnetic Fluctuations By O-X Mode Conversion, L. L. Vahala, G. Vahala, N. Bretz Jan 1990

Measurement Of Magnetic Fluctuations By O-X Mode Conversion, L. L. Vahala, G. Vahala, N. Bretz

Electrical & Computer Engineering Faculty Publications

The possibility of measuring magnetic fluctuations in a fusion plasma is considered by examining the O→X mode conversion. Under certain conditions and with good angular resolution, this mode conversion can be attributed to the presence of magnetic fluctuations even though the level of these fluctuations is much lower than that of density fluctuations. Some nonideal effects such as mode polarization mismatch at the plasma edge are also discussed.


Application Of The Results Of Carbon Pellet Modeling To The Problem Of Plasma Penetration, L. L. Vahala, A. G. El Cashlan, G. A. Gerdin, P. B. Parks Jan 1990

Application Of The Results Of Carbon Pellet Modeling To The Problem Of Plasma Penetration, L. L. Vahala, A. G. El Cashlan, G. A. Gerdin, P. B. Parks

Electrical & Computer Engineering Faculty Publications

The assumptions of the evaporation model for low-Z pellets interacting with magnetic fusion plasmas developed by Parks are tested. These assumptions are that the vapor density profile in the region adjacent to the pellet surface falls off with radial distance as r, where 5 <α<6, and that the ionization time for the transition between charge states זf (i.e., for r < ~3 sonic radii). The first assumption is tested by solving a two-parameter eigenvalue problem for the evaporation cloud in the region interior to the sonic radius; the results are found to be consistent with the low-Z evaporation model. The second assumption, that זzi «זf, is tested at the sonic radius using the results from atomic physics and the low-Z evaporation model. It is found that indeed זzi «זf for plasmas with parameters close to thermonuclear conditions (e.g. CIT), but not for those of smaller Tokamaks such as …


A Nonlinear Eigenvalue Problem In Astrophysical Magnetohydrodynamics: Some Properties Of The Spectrum, John A. Adam Jan 1989

A Nonlinear Eigenvalue Problem In Astrophysical Magnetohydrodynamics: Some Properties Of The Spectrum, John A. Adam

Mathematics & Statistics Faculty Publications

The equations of ideal magnetohydrodynamics (MHD) with an external gravitational potential—a ‘‘magnetoatmosphere’’—are examined in detail as a singular nonlinear eigenvalue problem. Properties of the spectrum are discussed with specific emphasis on two systems relevant to solar magnetohydrodynamics. In the absence of a gravitational potential, the system reduces to that of importance in MHD and plasma physics, albeit in a different geometry. This further reduces to a form isomorphic to that derived in the study of plasma oscillations in a cold plasma, Alfvén wave propagation in an inhomogeneous medium, and MHD waves in a sheet pinch. In cylindrical geometry, the relevant …


Statistically Constrained Decimation Of A Turbulence Model, Timothy Joe Williams Jan 1988

Statistically Constrained Decimation Of A Turbulence Model, Timothy Joe Williams

Dissertations, Theses, and Masters Projects

The constrained decimation scheme (CDS) is applied to a turbulence model. The CDS is a statistical turbulence theory formulated in 1985 by Robert Kraichnan; it seeks to correctly describe the statistical behavior of a system using only a small sample of the actual dynamics. The full set of dynamical quantities is partitioned into groups, within each of which the statistical properties must be uniform. Each statistical symmetry group is then decimated down to a small sample set of explicit dynamics. The statistical effects of the implicit dynamics outside the sample set are modelled by stochastic forces.;These forces are not totally …


Renormalization Group Theory Technique And Subgrid Scale Closure For Fluid And Plasma Turbulence, Ye Zhou Jan 1987

Renormalization Group Theory Technique And Subgrid Scale Closure For Fluid And Plasma Turbulence, Ye Zhou

Dissertations, Theses, and Masters Projects

Renormalization group theory is applied to incompressible three-dimension Navier-Stokes turbulence so as to eliminate unresolvable small scales. The renormalized Navier-Stokes equation includes a triple nonlinearity with the eddy viscosity exhibiting a mild cusp behavior, in qualitative agreement with the test-field model results of Kraichnan. For the cusp behavior to arise, not only is the triple nonlinearity necessary but the effects of pressure must be incorporated in the triple term.;Renormalization group theory is also applied to a model Alfven wave turbulence equation. In particular, the effect of small unresolvable subgrid scales on the large scales is computed. It is found that …


A Criterion For Vortex Breakdown, R. E. Spall, T. B. Gatski, C. E. Grosch Dec 1986

A Criterion For Vortex Breakdown, R. E. Spall, T. B. Gatski, C. E. Grosch

CCPO Publications

A criterion for the onset of vortex breakdown over a wide range of the Reynolds number is proposed. Based upon previous experimental, theoretical, and numerical studies, as well as a new numerical study, an appropriately defined local Rossby number is used to delineate the region where breakdown occurs. Comparisons are made with previously suggested criticality parameters and the unique features of the proposed Rossby number parameter are shown. A number of previous theoretical studies concentrating on inviscid standing‐wave analyses for trailing wing‐tip vortices are reviewed and reinterpreted, along with the previous numerical and experimental studies, in terms of the Rossby …


Turbulent Disruptions From The Strauss Equations, Jill Potkalitsky Dahlburg Jan 1985

Turbulent Disruptions From The Strauss Equations, Jill Potkalitsky Dahlburg

Dissertations, Theses, and Masters Projects

The subject of this thesis is an analysis of results from pseudospectral simulation of the Strauss equations of reduced three-dimensional magnetohydrodynamics. We have solved these equations in a rigid cylinder of square cross section, a cylinder with perfectly conducting side walls, and periodic ends. We assume that the uniform-density magnetofluid which fills the cylinder is resistive, but inviscid. Situations which we are considering are in several essential ways similar to a tokamak-like plasma; an external magnetic field is imposed, and the plasma carries a net current which produces a poloidal magnetic field of sufficient strength to induce current disruptions. These …