Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physics

Spectroscopic End Point Detection With An Electron Beam Evaporator, Ryan Mcgraw Mar 2024

Spectroscopic End Point Detection With An Electron Beam Evaporator, Ryan Mcgraw

University Honors Theses

Spectroscopic end point detection is a common tool used for measuring slope changes in wavelength intensity. Using algorithms able to apply this concept, coatings will be able to be dynamically measured in real time and stopped at the appropriate level to ensure process uniformity. It is currently applied to reductive processes such as etching, where the surface will start to be eaten away, creating a plasma. When the entire amount of a material on a substrate has been eaten away, the plasma will change color as it is beginning to etch a different material. Using a spectrometer, this point where …


Numerical Model Of A Radio Frequency Ion Source For Fusion Plasma Using Particle-In-Cell And Finite Difference Time Domain, Augustin L. Griswold Aug 2020

Numerical Model Of A Radio Frequency Ion Source For Fusion Plasma Using Particle-In-Cell And Finite Difference Time Domain, Augustin L. Griswold

University Honors Theses

Radio frequency (RF) plasma sources are common tool for application and study, and of particular interest for inertial electrostatic (IEC) fusion. Computational analysis is often carried out using particle in cell (PIC) methods or finite difference time domain (FDTD). However, a more holistic analysis is necessary as the particle distribution is highly dependant on the fields created by the plasma source. Herein, an analysis of a particular planar RF electrode with deuterium gas is provided which covers the fields and the particle behaviour using first FDTD then PIC. Further applications are discussed as well as further directions for this study.


Theoretical Estimates Of Spherical And Chromatic Aberration In Photoemission Electron Microscopy, Joseph P. S. Fitzgerald, Robert Campbell Word, Rolf Kӧnenkamp Jan 2016

Theoretical Estimates Of Spherical And Chromatic Aberration In Photoemission Electron Microscopy, Joseph P. S. Fitzgerald, Robert Campbell Word, Rolf Kӧnenkamp

Physics Faculty Publications and Presentations

We present theoretical estimates of the mean coefficients of spherical and chromatic aberration for low energy photoemission electron microscopy (PEEM). Using simple analytic models, we find that the aberration coefficients depend primarily on the difference between the photon energy and the photoemission threshold, as expected. However, the shape of the photoelectron spectral distribution impacts the coefficients by up to 30%. These estimates should allow more precise correction of aberration in PEEM in experimental situations where the aberration coefficients and precise electron energy distribution cannot be readily measured.


Positional Control Of Plasmonic Fields And Electron Emission, Robert Campbell Word, Joseph P. Fitzgerald, Rolf Könenkamp Sep 2014

Positional Control Of Plasmonic Fields And Electron Emission, Robert Campbell Word, Joseph P. Fitzgerald, Rolf Könenkamp

Physics Faculty Publications and Presentations

We report the positional control of plasmonic fields and electron emission in a continuous gap antenna structure of sub-micron size. We show experimentally that a nanoscale area of plasmon-enhanced electron emission can be motioned by changing the polarization of an exciting optical beam of 800 nm wavelength. Finite-difference calculations are presented to support the experiments and to show that the plasmon-enhanced electric field distribution of the antenna can be motioned precisely and predictively.


Molecular Fluorescence In The Vicinity Of A Charged Metallic Nanoparticle, H. Y. Chung, P. T. Leung, D. P. Tsai Nov 2013

Molecular Fluorescence In The Vicinity Of A Charged Metallic Nanoparticle, H. Y. Chung, P. T. Leung, D. P. Tsai

Physics Faculty Publications and Presentations

The modified fluorescence properties of a molecule in the vicinity of a metallic nanoparticle are further studied accounting for the possible existence of extraneous charges on the particle surface. This is achieved via a generalization of the previous theory of Bohren and Hunt for light scattering from a charged sphere, with the results applied to the calculation of the various decay rates and fluorescence yield of the admolecule. Numerical results show that while charge effects will in general blue-shift all the plasmonic resonances of the metal particle, both the quantum yield and the fluorescence yield can be increased at emission …


Multi-Level Surface Enhanced Raman Scattering Using AgoX Thin Film, Ming Lun Tseng, Chia Min Chang, Bo Han Cheng, Pin Chieh Wu, K. S. Chung, M. K. Hsiao, H. W. Huang, D. W. Huang, Hai-Pang Chiang, P.T. Leung, D. P. Tsai Oct 2013

Multi-Level Surface Enhanced Raman Scattering Using AgoX Thin Film, Ming Lun Tseng, Chia Min Chang, Bo Han Cheng, Pin Chieh Wu, K. S. Chung, M. K. Hsiao, H. W. Huang, D. W. Huang, Hai-Pang Chiang, P.T. Leung, D. P. Tsai

Physics Faculty Publications and Presentations

Ag nanostructures with surface-enhanced Raman scattering (SERS) activities have been fabricated by applying laser-direct writing (LDW) technique on silver oxide (AgOx) thin films. By controlling the laser powers, multi-level Raman imaging of organic molecules adsorbed on the nanostructures has been observed. This phenomenon is further investigated by atomic-force microscopy and electromagnetic calculation. The SERS-active nanostructure is also fabricated on transparent and flexible substrate to demonstrate our promising strategy for the development of novel and low-cost sensing chip.


Visualization Of Optical Wave Propagation In Femtosecond Photoemission Electron Microscopy, Rolf Kӧnenkamp, Robert Campbell Word, Joseph Fitzgerald Oct 2013

Visualization Of Optical Wave Propagation In Femtosecond Photoemission Electron Microscopy, Rolf Kӧnenkamp, Robert Campbell Word, Joseph Fitzgerald

Physics Faculty Publications and Presentations

Photoemission electron microscopy (PEEM) combines in a unique way photon probing and electron imaging. The imaging electrons are generated in a photoelectric process by illuminating the sample with ultra-violet or x-ray light. After generation these electrons are accelerated and introduced into an electron-optical system to produce a microscopic image of the specimen surface. The advantages of PEEM are manifold:

The avoidance of electron beam exposure makes PEEM a much gentler method than standard electron microscopy. This advantage is important when fragile organic or biological structures are studied. PEEM is also highly surface sensitive, since the photoelectrons typically escape the sample …


Crystal Structure Determination Of Β-Lactoglobulin From Electron Micrographs, Richard Roeter Jul 1971

Crystal Structure Determination Of Β-Lactoglobulin From Electron Micrographs, Richard Roeter

Dissertations and Theses

Often electron micrographs exhibit a repeating structure. Sometimes this repeating structure satisfies the definition of a crystal in that it has a three dimensional repeating structure. If the unit cell structure of this repeating structure can be determined it can be used to help categorize different sections of a particular sample. In some cases, the use of optical diffraction analysis of electron micrographs with repeating structure is a method of determining the unit cell structure.

Samples of β-Lactoglobulin were prepared for viewing in the electron microscope using both the crystalline material and carbon replicas of the crystal surface. Because the …


Electron Optical Study Of A Secondary Electron Multiplier, Chang Min Shen Jul 1970

Electron Optical Study Of A Secondary Electron Multiplier, Chang Min Shen

Dissertations and Theses

Electron orbital theory was applied to the design of the geometrical structure of an electron multiplier for an image intensifier. A special structure satisfying production requirements was studied. Electron optical calculations consisted of determining the potential distribution and tracing the electron trajectories. Liebmann's procedure was used to solve Laplace's equation with constant potentials on the multiplier electrodes as boundary conditions. The trajectories were determined by solving the equation of motion in an electrostatic field using a Runge-Kutta procedure. The initial conditions for the trajectories were the initial energies, initial positions, and the initial directions of the secondary electrons. The plotted …