Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy

PDF

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 121 - 150 of 9422

Full-Text Articles in Physical Sciences and Mathematics

Application Of Quantum Mechanical Techniques To Optical Waveguide Structures, Stuart Ward Aug 2023

Application Of Quantum Mechanical Techniques To Optical Waveguide Structures, Stuart Ward

Physics & Astronomy ETDs

The focus of this dissertation is on the application of supersymmetric quantum mechanics to the problem of microbending in optical waveguides and on the analysis of soliton decay due solely to quantum mechanical effects.

The techniques of supersymmetric quantum mechanics are applied to the equation of motion describing light propagation in an optical waveguide which is undergoing microbending. Based on these supersymmetric techniques, given a particular refractive index profile, one may derive a new refractive index profile which results in less loss due to the microbending -- the particular example of the monomial index profile is analyzed in detail. An …


Near- And Far- Field Optical Response Of Ensembles Of Nanostructures, Lauren Zundel Aug 2023

Near- And Far- Field Optical Response Of Ensembles Of Nanostructures, Lauren Zundel

Physics & Astronomy ETDs

The ability of metallic nanostructures to support collective oscillations of their conduction electrons, known as surface plasmons, makes them attractive candidates for a wide range of applications in areas as diverse as cancer therapy, biosensing, and solar energy harvesting. These applications are especially promising for periodic arrays of nanostructures, which can support collective modes known as lattice resonances, and for nanostructures with extreme aspect ratios that give rise to enhanced light-matter interaction. In this Thesis, we employ a coupled dipole model to theoretically explore the lattice resonances supported by complex arrays of nanoparticles containing multiple nanoparticles per unit cell. We …


Cosmic Diffuse Neutrino And Gamma-Ray Backgrounds In The Mev Regime, Ilukpitiye Samalka Anandagoda Aug 2023

Cosmic Diffuse Neutrino And Gamma-Ray Backgrounds In The Mev Regime, Ilukpitiye Samalka Anandagoda

All Dissertations

Cosmic Multi-Messenger backgrounds include relic diffuse components created in the early Universe and contributions from individual sources. In this dissertation, I present the work done in Anandagoda (2019); Anandagoda et al. (2020, 2023) where type Ia (SNe Ia) and core-collapse supernovae (CCSNe) contributions to the diffuse neutrino and gamma-ray backgrounds in the MeV regime are studied. These backgrounds are referred to as DSNB and DSGB respectively. Based on this work, the diffuse SN Ia background is ~106 times lower (for electron antineutrinos) than the CCSN background making it negligible. The predicted DSNB electron antineutrino flux at earth in the …


Open Data From The Third Observing Run Of Ligo, Virgo, Kagra, And Geo, R. Abbott, H. Abe, F. Acernese, Teviet Creighton, Mario C. Diaz, Francisco Llamas, Soma Mukherjee, Gaukhar Nurbek, Volker Quetschke, Wenhui Wang Aug 2023

Open Data From The Third Observing Run Of Ligo, Virgo, Kagra, And Geo, R. Abbott, H. Abe, F. Acernese, Teviet Creighton, Mario C. Diaz, Francisco Llamas, Soma Mukherjee, Gaukhar Nurbek, Volker Quetschke, Wenhui Wang

Physics and Astronomy Faculty Publications and Presentations

The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series …


Computational And Experimental Study On Undoped And Er-Doped Lithium Tantalate Nanofluorescent Probes, Mkhitar A. Hobosyan, Andrea Pelayo Carvajal, Bhupendra B. Srivastava, Tamanna Zakia, Mohammed Jasim Uddin, Karen S. Martirosyan, Eric Rodriguez, Kofi Nketia Ackaah-Gyasi, Nicholas Dimakis Aug 2023

Computational And Experimental Study On Undoped And Er-Doped Lithium Tantalate Nanofluorescent Probes, Mkhitar A. Hobosyan, Andrea Pelayo Carvajal, Bhupendra B. Srivastava, Tamanna Zakia, Mohammed Jasim Uddin, Karen S. Martirosyan, Eric Rodriguez, Kofi Nketia Ackaah-Gyasi, Nicholas Dimakis

Physics and Astronomy Faculty Publications and Presentations

We present a combined density functional theory (DFT) and experimental work on lithium tantalate LiTaO3 (LT) and its Er-doped counterparts. We calculate the electronic and optical properties for both LT and LT:Er+3, with Er occupying either Li or Ta sites, at 4.167 mol%. The generalized gradient approximation (GGA) calculations show that the Er-4 f bands appear closer to the conduction band bottom and to the valance band top, for the first and second doped configurations, respectively. This agrees with changes in the imaginary part of the frequency dependent dielectric function between the doped configurations. There are striking differences between the …


Magmatic Processes Leading To Compositional Diversity In The Mars Crust, Amanda Marie Ostwald Aug 2023

Magmatic Processes Leading To Compositional Diversity In The Mars Crust, Amanda Marie Ostwald

UNLV Theses, Dissertations, Professional Papers, and Capstones

The ancient Mars crust can yield insights into planet formation and evolution that Earth cannot. Direct investigation of the martian surface is limited to studies on meteorites and rover-obtained analyses. The nakhlites and chassignites, two classes of martian meteorites, are together the largest suite of martian meteorites derived from a single location on the surface. As such, they present a rare opportunity to study the Mars crust in detail using samples bearing a contextual relationship. Rover studies have found a surprising amount of compositional diversity in surface materials, the formation mechanisms of which are not well-constrained. This dissertation leverages meteorites …


The Loneliest Galaxies In The Universe: A Gama And Galaxy Zoo Study On Void Galaxy Morphology, Lori E. Porter, Benne Holwerda, Sandor Kruk, Maritza Lara-López, Kevin A. Pimbblet, Christopher P A Henry, Sarah Casura, Lee S. Kelvin Jul 2023

The Loneliest Galaxies In The Universe: A Gama And Galaxy Zoo Study On Void Galaxy Morphology, Lori E. Porter, Benne Holwerda, Sandor Kruk, Maritza Lara-López, Kevin A. Pimbblet, Christopher P A Henry, Sarah Casura, Lee S. Kelvin

Faculty Scholarship

The large-scale structure of the Universe is comprised of galaxy filaments, tendrils, and voids. The majority of the Universe’s volume is taken up by these voids, which exist as underdense, but not empty, regions. The galaxies found inside these voids are expected to be some of the most isolated objects in the Universe. This study, using the Galaxy and Mass Assembly (GAMA) and Galaxy Zoo surveys, aims to investigate basic physical properties and morphology of void galaxies versus field (filament and tendril) galaxies. We use void galaxies with stellar masses (⁠M∗" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; …


Advancing Our Understanding Of Martian Proton Aurora Through A Coordinated Multi-Model Comparison Campaign, Andrea C. G. Hughes, Michael Scott Chaffin, Edwin J. Mierkiewicz, Justin Deighan, Rebecca Jolitz, Esa Kallio, Guillaume Gronof, Valery I. Shematovich, Dmitry Bisikalo, Cyril L. Simon Wedlund, Jasper S. Halekas, Nicholas M. Schneider, Birgit Ritter, Zachary Girazian, Sonal Jain, Jean-Claude M. C. G´Erard, Bradley Michael Hegyi Jul 2023

Advancing Our Understanding Of Martian Proton Aurora Through A Coordinated Multi-Model Comparison Campaign, Andrea C. G. Hughes, Michael Scott Chaffin, Edwin J. Mierkiewicz, Justin Deighan, Rebecca Jolitz, Esa Kallio, Guillaume Gronof, Valery I. Shematovich, Dmitry Bisikalo, Cyril L. Simon Wedlund, Jasper S. Halekas, Nicholas M. Schneider, Birgit Ritter, Zachary Girazian, Sonal Jain, Jean-Claude M. C. G´Erard, Bradley Michael Hegyi

Publications

Proton aurora are the most commonly observed yet least studied type of aurora at Mars. In order to better understand the physics and driving processes of Martian proton aurora, we undertake a multi-model comparison campaign. We compare results from four different proton/hydrogen precipitation models with unique abilities to represent Martian proton aurora: Jolitz model (3-D Monte Carlo), Kallio model (3-D Monte Carlo), Bisikalo/Shematovich et al. model (1-D kinetic Monte Carlo), and Gronoff et al. model (1-D kinetic). This campaign is divided into two steps: an inter-model comparison and a data-model comparison. The inter-model comparison entails modeling five different representative cases …


Connecting The Optical Regime To The X-Ray In Neutron Star Low Mass X-Ray Binaries, Alexander B. Igl Jul 2023

Connecting The Optical Regime To The X-Ray In Neutron Star Low Mass X-Ray Binaries, Alexander B. Igl

LSU Doctoral Dissertations

Using Rossi X-Ray Timing Explorer and Otto Struve Telescope data of low mass X-ray binaries (LMXBs) Cyg X-2 and Sco X-1, the optical regime’s relationship to the X-ray was investigated through several angles. Discrete cross correlations using the optical and X-ray data revealed evidence of reprocessing in both datasets. These were more consistently present in Sco X-1, where both small and obvious features were seen at less than 4 s of optical lag. The size of these lags makes it likely that most of the reprocessing is taking place on the accretion disk. Parameterization of the Z tracks led to …


A Method For Calculating Lateral Surface Area Of Bistatic Radar Beam Overlap, James I. Murray, Fredrick A. Jenet Jul 2023

A Method For Calculating Lateral Surface Area Of Bistatic Radar Beam Overlap, James I. Murray, Fredrick A. Jenet

Physics and Astronomy Faculty Publications and Presentations

It has been shown that bistatic radars using radio telescopes as receivers can be used to increase the sensitivity of orbital debris measurements over traditional terrestrial monostatic radar. A method to calculate the lateral surface area of a bistatic radar is needed to evaluate the efficacy of a proposed bistatic radar configuration for orbital debris measurements. For over three decades, models of the orbital debris (OD) environment in low Earth orbit (LEO) have been developed to assess the risk posed by OD to spacecraft. While terrestrial radar measures debris 3 mm and larger and in situ measurements provide data for …


What Is A Polygonal Impact Crater? A Proposed Framework Toward Quantifying Crater Shapes, Stuart J. Robbins, Jamie D. Riggs Jul 2023

What Is A Polygonal Impact Crater? A Proposed Framework Toward Quantifying Crater Shapes, Stuart J. Robbins, Jamie D. Riggs

College of Population Health Faculty Papers

Impact craters are used for a wide array of investigations of planetary surfaces. A crater form that is somewhat rare, forming only ∼10% of impact craters, is the polygonal impact crater (or PIC). These craters have been visually, manually identified as having at least two rim segments that are best represented as straight lines. Such straight lines or edges are most often used to infer details about the subsurface crust where faults control the structure of the crater cavity as it formed. The PIC literature is scant, but almost exclusively these craters are identified manually, and the potentially straight edges …


Noise Analysis Of The Indian Pulsar Timing Array Data Release I, Aman Srivastava, Shantanu Desai, Neel Kolhe, Mayuresh Surnis, Bhal Chandra Joshi, Abhimanyu Susobhanan, Aurélien Chalumeau, Shinnosuke Hisano, Nobleson K, Raghav Girgaonkar Jul 2023

Noise Analysis Of The Indian Pulsar Timing Array Data Release I, Aman Srivastava, Shantanu Desai, Neel Kolhe, Mayuresh Surnis, Bhal Chandra Joshi, Abhimanyu Susobhanan, Aurélien Chalumeau, Shinnosuke Hisano, Nobleson K, Raghav Girgaonkar

Physics and Astronomy Faculty Publications and Presentations

The Indian Pulsar Timing Array (InPTA) collaboration has recently made its first official data release (DR1) for a sample of 14 pulsars using 3.5 years of uGMRT observations. We present the results of single-pulsar noise analysis for each of these 14 pulsars using the InPTA DR1. For this purpose, we consider white noise, achromatic red noise, dispersion measure (DM) variations, and scattering variations in our analysis. We apply Bayesian model selection to obtain the preferred noise models among these for each pulsar. For PSR J1600−3053, we find no evidence of DM and scattering variations, while for PSR J1909−3744, we find …


Estimation Of The Kelvin–Helmholtz Unstable Boundary, Xuanye Ma Jul 2023

Estimation Of The Kelvin–Helmholtz Unstable Boundary, Xuanye Ma

Publications

The Kelvin–Helmholtz (KH) instability is one of the most important mechanisms of the viscous like interaction between the solar wind and the magnetosphere (MSP), which transport the mass, energy, momentum, and magnetic flux. Thus, it is important to examine whether the magnetopause boundary is KH unstable or not. Based on the KH onset conditions, this report proposes to use a matrix to identify the most KH unstable direction based on the in-situ measurements of the density, velocity, and magnetic field in the MSP and magneto sheath. The range of the KH unstable direction can be easily estimated based on the …


Gama/Devils: Cosmic Star Formation And Agn Activity Over 12.5 Billion Years, Jordan C J D’Silva, Simon P. Driver, Claudia D P Lagos, Aaron S G Robotham, Sabine Bellstedt, Luke J M Davies, Jessica E. Thorne, Joss Bland-Hawthorn, Matias Bravo, Benne Holwerda, Steven Phillipps, Nick Seymour, Malgorzata Siudek, Rogier A. Windhorst Jul 2023

Gama/Devils: Cosmic Star Formation And Agn Activity Over 12.5 Billion Years, Jordan C J D’Silva, Simon P. Driver, Claudia D P Lagos, Aaron S G Robotham, Sabine Bellstedt, Luke J M Davies, Jessica E. Thorne, Joss Bland-Hawthorn, Matias Bravo, Benne Holwerda, Steven Phillipps, Nick Seymour, Malgorzata Siudek, Rogier A. Windhorst

Faculty Scholarship

We use the Galaxy and Mass Assembly (GAMA) and the Deep Extragalactic Visible Legacy Survey (DEVILS) observational data sets to calculate the cosmic star formation rate (SFR) and active galactic nuclei (AGN) bolometric luminosity history (CSFH/CAGNH) over the last 12.5 billion years. SFRs and AGN bolometric luminosities were derived using the spectral energy distribution fitting code ProSpect, which includes an AGN prescription to self consistently model the contribution from both AGN and stellar emission to the observed rest-frame ultra-violet to far-infrared photometry. We find that both the CSFH and CAGNH evolve similarly, rising in the early Universe up to a …


Discovery Of Extraordinary X-Ray Emission From Magnetospheric Interaction In The Unique Binary Stellar System Ε Lupi, B. Das, V. Petit, Y. Nazé, M. F. Corcoran, David H. Cohen, A. Biswas, P. Chandra, A. David-Uraz, M. A. Leutenegger, C. Neiner, H. Pablo, E. Paunzen, M. E. Shultz, A. Ud-Doula, G. A. Wade Jul 2023

Discovery Of Extraordinary X-Ray Emission From Magnetospheric Interaction In The Unique Binary Stellar System Ε Lupi, B. Das, V. Petit, Y. Nazé, M. F. Corcoran, David H. Cohen, A. Biswas, P. Chandra, A. David-Uraz, M. A. Leutenegger, C. Neiner, H. Pablo, E. Paunzen, M. E. Shultz, A. Ud-Doula, G. A. Wade

Physics & Astronomy Faculty Works

We report detailed X-ray observations of the unique binary system ϵ Lupi, the only known short-period binary consisting of two magnetic early-type stars. The components have comparably strong, but anti-aligned magnetic fields. The orbital and magnetic properties of the system imply that the magnetospheres overlap at all orbital phases, suggesting the possibility of variable inter-star magnetospheric interaction due to the non-negligible eccentricity of the orbit. To investigate this effect, we observed the X-ray emission from ϵ Lupi, both near and away from periastron passage, using the Neutron Star Interior Composition Explorer mission (NICER) X-ray Telescope. We find that the system …


Development And Testing Of A New Method For Velocity-Selecting White Dwarfs From Gaia By Galactic Population, Joseph Hammill Jul 2023

Development And Testing Of A New Method For Velocity-Selecting White Dwarfs From Gaia By Galactic Population, Joseph Hammill

Doctoral Dissertations and Master's Theses

The detailed processes by which spiral galaxies form remains an open question in modern cosmology. Observations of the current configuration of spiral galaxies including the Milky Way reveal thin and thick disk and halo populations which must all be accounted for in formation theories and likely have distinct ages. Using the Milky Way as an example to probe this question, we are studying the formation history of these structures.

This work details our approach to age-dating the galaxy, velocity-selecting targets from a sample of white dwarfs from the Gaia DR3 catalog that have also been age-analysed using BASE-9. BASE-9 uses …


Toi-2498 B: A Hot Bloated Super-Neptune Within The Neptune Desert, G. Frame, D. J. Armstrong, H. M. Cegla, J. Fernández Fernández, A. Osborn, V. Adibekyan, K. A. Collins, E. Delgado Mena, S. Giacalone, J. F. Kielkopf, N. C. Santos, S. G. Sousa, K. G. Stassun, C. Ziegler, D. R. Anderson, S. C. C. Barros, D. Bayliss, C. Briceño, D. M. Conti, C. D. Dressing, X. Dumusque, P. Figueira, W. Fong, S. Gill, F. Hawthorn, J. M. Jenkins, Eric L.N. Jensen, M. A. F. Keniger, D. W. Latham, N. Law, J. J. Lissauer, A. W. Mann, L. D. Nielsen, H. Osborn, M. Paegert, S. Seager, R. P. Schwarz, A. Shporer, G. Srdoc, P. A. Strøm, J. N. Winn, P. J. Wheatley Jul 2023

Toi-2498 B: A Hot Bloated Super-Neptune Within The Neptune Desert, G. Frame, D. J. Armstrong, H. M. Cegla, J. Fernández Fernández, A. Osborn, V. Adibekyan, K. A. Collins, E. Delgado Mena, S. Giacalone, J. F. Kielkopf, N. C. Santos, S. G. Sousa, K. G. Stassun, C. Ziegler, D. R. Anderson, S. C. C. Barros, D. Bayliss, C. Briceño, D. M. Conti, C. D. Dressing, X. Dumusque, P. Figueira, W. Fong, S. Gill, F. Hawthorn, J. M. Jenkins, Eric L.N. Jensen, M. A. F. Keniger, D. W. Latham, N. Law, J. J. Lissauer, A. W. Mann, L. D. Nielsen, H. Osborn, M. Paegert, S. Seager, R. P. Schwarz, A. Shporer, G. Srdoc, P. A. Strøm, J. N. Winn, P. J. Wheatley

Physics & Astronomy Faculty Works

We present the discovery and confirmation of a transiting hot bloated super-Neptune using photometry from the Transiting Exoplanet Survey Satellite (TESS) and the Las Cumbres Observatory Global Telescope (LCOGT) and radial velocity measurements from the High Accuracy Radial velocity Planet Searcher (HARPS). The host star TOI-2498 is a V = 11.2, G-type (Teff = 5905 ± 12 K) solar-like star with a mass of 1.12 ± 0.02 M and a radius of 1.26 ± 0.04 R. The planet, TOI-2498 b, orbits the star with a period of 3.7 d, has a radius of …


Optimizing Convolutional Neural Networks For Transient Detection In Optical Astronomy With Augmented Datasets, Wendy Mendoza Jul 2023

Optimizing Convolutional Neural Networks For Transient Detection In Optical Astronomy With Augmented Datasets, Wendy Mendoza

Theses and Dissertations

We present a technique for optical transient detection using artificial neural networks, particularly a Convolutional Neural Network (CNN), a deep learning algorithm. This method analyzes images of the same area of the sky captured by several telescopes, with one image serving as a reference for a probable transient’s epoch and the other as an image from a previous epoch. We train the CNN on simulated sources and test it on actual image data samples using data from the Dr. Cristina V. Torres Memorial Astronomical Observatory and Sloan Digital Sky Survey. This autonomous detection method replaces the standard procedure, which involves …


Near-Ir Spectroscopic Analysis Of The Primary Volatile Composition Of Long And Short-Period Comets, Younas Khan Jun 2023

Near-Ir Spectroscopic Analysis Of The Primary Volatile Composition Of Long And Short-Period Comets, Younas Khan

Dissertations

Comets are among the most well-preserved objects that formed in the protosolar nebula ∼4.5 Gyr ago. Hence, they are important for understanding various aspects of the formation, evolution, and habitability of the solar system. Multiple primary volatiles (molecules directly sublimating into the coma from the nucleus) emit via rovibrational transitions in the near-IR, providing opportunities to calculate their abundances. To date, only ∼50 comets have been characterized for their primary volatiles, with the short-period Jupiter-family comets (JFCs) being significantly underrepresented. In contrast, hundreds of comets have been sampled at optical/UV wavelengths, primarily for the composition of daughter species, leading to …


Dataset Of Optical And Electronic Properties For Mos Browzine Journal Cover 2-Graphene Vertical Heterostructures And Mos2-Graphene-Au Heterointerfaces, Sanju Gupta, Panagiota Pimenidou, Miguel Garcia, Shivanshi Das, Nicholas Dimakis Jun 2023

Dataset Of Optical And Electronic Properties For Mos Browzine Journal Cover 2-Graphene Vertical Heterostructures And Mos2-Graphene-Au Heterointerfaces, Sanju Gupta, Panagiota Pimenidou, Miguel Garcia, Shivanshi Das, Nicholas Dimakis

Physics and Astronomy Faculty Publications and Presentations

The computational and experimental data presented in this paper refer to the research article "First-Principles Calculations Integrated with Experimental Optical and Electronic Properties for MoS2-graphene Heterostructures and MoS2-graphene-Au Heterointerfaces". The computational data includes structural information, electronic and optical properties, and data to calculate the work functions for various molybdenum disulfide and graphene heterostructures and their heterointerfaces with gold. The optical properties calculations include the frequency-dependent dielectric function, the refractive index, the reflectivity, the extinction coefficient, and the energy loss function. These properties were calculated using the independent particle approximation (IPA). As for the experimental optoelectronic properties, we measured photoluminescence spectra …


Dyonic Taub-Nut-Ads Space Phase Structure, Mohamed Tharwat Jun 2023

Dyonic Taub-Nut-Ads Space Phase Structure, Mohamed Tharwat

Theses and Dissertations

The Taub-NUT spacetime remains to hold many mysteries more than half a century after its discovery. The metric's controversy owes largely to the nut charge and the existence of Misner strings. Traditionally the metric is treated in the euclidean signature, this treatment hides the Misner strings. We treat the Taub-NUT spacetime with the Misner strings visible, not enforcing the time periodicity condition. We examine the phase structure belonging to three different horizon geometries. We deal with the hyperbolic, flat and spherical cases. We consider the stable phases, the phase transitions that exist between them, and find the preferable phases in …


Bayesian Inference For The White Dwarf Initial-Final Mass Relation, Nathan Stein, Ted Von Hippel, David Van Dyk, Steven Degennaro, Elizabeth Jeffery, Bill Jefferys Jun 2023

Bayesian Inference For The White Dwarf Initial-Final Mass Relation, Nathan Stein, Ted Von Hippel, David Van Dyk, Steven Degennaro, Elizabeth Jeffery, Bill Jefferys

Publications

Stars lose mass as they age, and understanding mass loss is important for understanding stellar evolution. The initial-final mass relation (IFMR) is the relationship between a white dwarf’s initial mass on the main sequence and its final mass. We have developed a new method for fitting the IFMR based on a Bayesian analysis of photometric observations, combining deterministic models of stellar evolution in an internally coherent way. No mass data are used. Our method yields precise inferences (with uncertainties) for a parameterized linear IFMR. Our method can also return posterior distributions of white dwarf initial and final masses.


Databases And Inter-Connectivity In Ground-Based Astronomy, Ted Von Hippel, C. M. Mountain Jun 2023

Databases And Inter-Connectivity In Ground-Based Astronomy, Ted Von Hippel, C. M. Mountain

Publications

Optical and infrared ground-based astronomy is undergoing a renaissance. Advances in material technology, system modeling, and the ability to correct atmospheric distortions in real time have produced a new generation of powerful, large telescopes. An equally profound revolution stems from the availability of large observational databases that span the electromagnetic spectrum. The increased use of such databases as well as the need to operate the new telescopes efficiently requires the development of a National or International Virtual Observatory to set standards for astronomical database formats, data quality assurance, and access protocols, and also to provide all-inclusive centers for data products.


Cosmological Vector Fields And Constraining The Neutrino Masses, Avery J. Tishue Jun 2023

Cosmological Vector Fields And Constraining The Neutrino Masses, Avery J. Tishue

Dartmouth College Ph.D Dissertations

In this thesis I explore two main topics: the role and consequences of cosmological vector fields, and new ideas for constraining fundamental physics with state-of-the-art experiments. These topics are disparate in content and technique but unified in their attempt to leverage novel approaches to better understand longstanding questions in cosmology. These questions, such as ``What is causing the universe to accelerate today?'' and ``What are the neutrino masses?'', underpin the modern cosmological paradigm. They play a key role in our understanding of cosmic history, the formation of structure, and the fate of our universe. Answers to or hints about these …


Galaxy And Mass Assembly (Gama): Comparing Visually And Spectroscopically Identified Galaxy Merger Samples, Alice Desmons, Sarah Brough, Cristina Martínez-Lombilla, Roberto De Propris, Benne Holwerda, Ángel R. López-Sánchez Jun 2023

Galaxy And Mass Assembly (Gama): Comparing Visually And Spectroscopically Identified Galaxy Merger Samples, Alice Desmons, Sarah Brough, Cristina Martínez-Lombilla, Roberto De Propris, Benne Holwerda, Ángel R. López-Sánchez

Faculty Scholarship

We conduct a comparison of the merging galaxy populations detected by a sample of visual identification of tidal features around galaxies as well as spectroscopically detected close pairs of galaxies to determine whether our method of selecting merging galaxies biases our understanding of galaxy interactions. Our volume-limited parent sample consists of 852 galaxies from the Galaxy And Mass Assembly (GAMA) survey in the redshift range 0.04 ≤ z ≤ 0.20 and stellar mass range 9.50 ≤ log 10(M⋆/M⊙)≤ 11.0" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; font-optical-sizing: inherit; font-kerning: inherit; …


Constraints On The Cosmic Expansion History From Gwtc–3, R. Abbott, H. Abe, F. Acernese, K. Ackley, N. Adhikari, M. G. Benjamin, Teviet Creighton, Mario C. Diaz, F. Llamas, Soma Mukherjee, Gaukhar Nurbek, Volker Quetschke, Wenhui Wang Jun 2023

Constraints On The Cosmic Expansion History From Gwtc–3, R. Abbott, H. Abe, F. Acernese, K. Ackley, N. Adhikari, M. G. Benjamin, Teviet Creighton, Mario C. Diaz, F. Llamas, Soma Mukherjee, Gaukhar Nurbek, Volker Quetschke, Wenhui Wang

Physics and Astronomy Faculty Publications and Presentations

We use 47 gravitational wave sources from the Third LIGO–Virgo–Kamioka Gravitational Wave Detector Gravitational Wave Transient Catalog (GWTC–3) to estimate the Hubble parameter H(z), including its current value, the Hubble constant H0. Each gravitational wave (GW) signal provides the luminosity distance to the source, and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and H(z). The source mass distribution displays a peak around 34 M⊙, followed by a drop-off. Assuming …


Development Of A Particle-In-Cell/Monte Carlo Simulation For Weakly Ionized Plasmas, Xiaochuan (Chloe) Zheng, James Doyle Jun 2023

Development Of A Particle-In-Cell/Monte Carlo Simulation For Weakly Ionized Plasmas, Xiaochuan (Chloe) Zheng, James Doyle

Macalester Journal of Physics and Astronomy

A plasma is a gaseous system that contains large numbers of electrons and ions that are subject to forces produced by electric and magnetic fields. Weakly ionized plasmas, where the plasma density is much lower than the background gas density, are common in laboratory, atmospheric, and astrophysical situations. Theoretical calculations of plasma properties are challenging due to the complexity of the differential equations used to characterize fundamental physics. Particle-in-cell (PIC) simulations bypass the mathematical difficulties associated with analytic models, at the expense of more complex and time-consuming computer calculations. In this work we developed a one dimensional PIC simulation of …


Tools For Refining The Baryonic Tully-Fisher Relation, Ezra D. Wolf Jun 2023

Tools For Refining The Baryonic Tully-Fisher Relation, Ezra D. Wolf

Macalester Journal of Physics and Astronomy

This paper discusses the development of tools for galactic photometry using wise, and for reduction and analysis of 21cm galaxy spectra. These Python-based tools can then be applied to selected data in order to refine the Baryonic Tully-Fisher Relation. This relation, between baryonic mass and rotational velocity of a galaxy, proves useful for extragalactic research, particularly in calculating redshift-independent distances. While these tools could be further improved, they provide a robust process for calculation of particular galaxy characteristics.


Hydrosphere: Modeling The Planetary Structure Of Ocean Planets And Icy Moons, Karlee R. Taylor Jun 2023

Hydrosphere: Modeling The Planetary Structure Of Ocean Planets And Icy Moons, Karlee R. Taylor

Macalester Journal of Physics and Astronomy

In recent years, “water worlds” have become increasingly of interest to astrobiologists due to their high potential for habitability, as the large amount water on their surfaces is not only necessary for life, but also promises long-term climatic stability. However, also necessary for life is the exchange of chemical compounds between the geosphere and the hydrosphere - something which may be ob- structed by the presence of high pressure ices on these ocean planets and icy moons. In order to explore the habitability of bodies with various surface temperatures, water masses, and core radii, this project develops a model of …


From Experiment To Theory: Investigate The Effect Of Pump Beam Size On Photovoltaic Material Behavior, Dengyu Tu Jun 2023

From Experiment To Theory: Investigate The Effect Of Pump Beam Size On Photovoltaic Material Behavior, Dengyu Tu

Macalester Journal of Physics and Astronomy

In orde to investigate the effect of the pump beam size on an ultrafast conductivity measurement experiment, an experiment using Femto XL-500 laser and a simulation using Mathematica were performed. From the experiment data, we found that as the size of the pump beam decreases beyond certain limit, the Drude model can not accurately predict the relationship between conductivity and frequency. In addition, the simulation results corroborate with the experiment result that there is a limit for the size of the pump beam.