Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 132

Full-Text Articles in Physical Sciences and Mathematics

The Loneliest Galaxies In The Universe: A Gama And Galaxy Zoo Study On Void Galaxy Morphology, Lori E. Porter, Benne Holwerda, Sandor Kruk, Maritza Lara-López, Kevin A. Pimbblet, Christopher P A Henry, Sarah Casura, Lee S. Kelvin Jul 2023

The Loneliest Galaxies In The Universe: A Gama And Galaxy Zoo Study On Void Galaxy Morphology, Lori E. Porter, Benne Holwerda, Sandor Kruk, Maritza Lara-López, Kevin A. Pimbblet, Christopher P A Henry, Sarah Casura, Lee S. Kelvin

Faculty Scholarship

The large-scale structure of the Universe is comprised of galaxy filaments, tendrils, and voids. The majority of the Universe’s volume is taken up by these voids, which exist as underdense, but not empty, regions. The galaxies found inside these voids are expected to be some of the most isolated objects in the Universe. This study, using the Galaxy and Mass Assembly (GAMA) and Galaxy Zoo surveys, aims to investigate basic physical properties and morphology of void galaxies versus field (filament and tendril) galaxies. We use void galaxies with stellar masses (⁠M∗" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; …


Galaxy And Mass Assembly (Gama): Comparing Visually And Spectroscopically Identified Galaxy Merger Samples, Alice Desmons, Sarah Brough, Cristina Martínez-Lombilla, Roberto De Propris, Benne Holwerda, Ángel R. López-Sánchez Jun 2023

Galaxy And Mass Assembly (Gama): Comparing Visually And Spectroscopically Identified Galaxy Merger Samples, Alice Desmons, Sarah Brough, Cristina Martínez-Lombilla, Roberto De Propris, Benne Holwerda, Ángel R. López-Sánchez

Faculty Scholarship

We conduct a comparison of the merging galaxy populations detected by a sample of visual identification of tidal features around galaxies as well as spectroscopically detected close pairs of galaxies to determine whether our method of selecting merging galaxies biases our understanding of galaxy interactions. Our volume-limited parent sample consists of 852 galaxies from the Galaxy And Mass Assembly (GAMA) survey in the redshift range 0.04 ≤ z ≤ 0.20 and stellar mass range 9.50 ≤ log 10(M⋆/M⊙)≤ 11.0" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; font-optical-sizing: inherit; font-kerning: inherit; …


Wallaby Pilot Survey: Hydra Cluster Galaxies Uv And H I Morphometrics, Benne W. Holwerda, Frank Bigiel, Albert Bosma, Helene M. Courtois, Nathan Deg, Helga Dénes, Ahmed Elagali, Bi-Qing For, Baerbel Koribalski, Denis A. Leahy, Karen Lee-Waddell, Ángel R. López-Sánchez, Se-Heon Oh, Tristan N. Reynolds, Jonghwan Rhee, Kristine Spekkens, Jing Wang, Tobias Westmeier, O Ivy Wong Mar 2023

Wallaby Pilot Survey: Hydra Cluster Galaxies Uv And H I Morphometrics, Benne W. Holwerda, Frank Bigiel, Albert Bosma, Helene M. Courtois, Nathan Deg, Helga Dénes, Ahmed Elagali, Bi-Qing For, Baerbel Koribalski, Denis A. Leahy, Karen Lee-Waddell, Ángel R. López-Sánchez, Se-Heon Oh, Tristan N. Reynolds, Jonghwan Rhee, Kristine Spekkens, Jing Wang, Tobias Westmeier, O Ivy Wong

Faculty Scholarship

Galaxy morphology in atomic hydrogen (H I) and in the ultraviolet (UV) are closely linked. This has motivated their combined use to quantify morphology over the full H I disc for both H I and UV imaging. We apply galaxy morphometrics: concentration, asymmetry, gini, M20 and multimode-intensity-deviation statistics to the first moment-0 maps of the WALLABY Survey of galaxies in the hydra cluster centre. Taking advantage of this new H I survey, we apply the same morphometrics over the full H I extent on archival GALEX FUV and NUV data to explore how well H I truncated, extended ultraviolet …


Modelling Strong Lenses From Wide-Field Ground-Based Observations In Kids And Gama, Shawn Knabel, Benne Holwerda, J Nightingale, T Treu, M Bilicki, S Brough, S Driver, L Finnerty, L Haberzettl, S Hegde, A M. Hopkins, K Kuijken, J Liske, A K. Pimblett, R C. Steele, A H. Wright Jan 2023

Modelling Strong Lenses From Wide-Field Ground-Based Observations In Kids And Gama, Shawn Knabel, Benne Holwerda, J Nightingale, T Treu, M Bilicki, S Brough, S Driver, L Finnerty, L Haberzettl, S Hegde, A M. Hopkins, K Kuijken, J Liske, A K. Pimblett, R C. Steele, A H. Wright

Faculty Scholarship

Despite the success of galaxy-scale strong gravitational lens studies with Hubble-quality imaging, a number of well-studied strong lenses remains small. As a result, robust comparisons of the lens models to theoretical predictions are difficult. This motivates our application of automated Bayesian lens modelling methods to observations from public data releases of overlapping large ground-based imaging and spectroscopic surveys: Kilo-Degree Survey (KiDS) and Galaxy and Mass Assembly (GAMA), respectively. We use the open-source lens modelling software PYAUTOLENS to perform our analysis. We demonstrate the feasibility of strong lens modelling with large-survey data at lower resolution as a complementary avenue to studies …


Galaxy And Mass Assembly (Gama): The Dependence Of Star Formation On Surface Brightness In Low-Redshift Galaxies, S Phillipps, S Bellstedt, M N. Bremer, R De Propris, P A. James, S Casura, J Liske, B W. Holwerda Dec 2022

Galaxy And Mass Assembly (Gama): The Dependence Of Star Formation On Surface Brightness In Low-Redshift Galaxies, S Phillipps, S Bellstedt, M N. Bremer, R De Propris, P A. James, S Casura, J Liske, B W. Holwerda

Faculty Scholarship

The star-formation rate in galaxies is well known to correlate with stellar mass (the ‘star-forming main sequence’). Here, we extend this further to explore any additional dependence on galaxy surface brightness, a proxy for stellar mass surface density. We use a large sample of low-redshift (z ≤ 0.08) galaxies from the Galaxy And Mass Assembly survey which have both spectral energy distribution (SED) derived star-formation rates and photometric bulge-disc decompositions, the latter providing measures of disc surface brightness and disc masses. Using two samples, one of galaxies fitted by a single component with Sérsic index below 2 and one …


Galapagos-2/Galfitm/Gama – Multi-Wavelength Measurement Of Galaxy Structure: Separating The Properties Of Spheroid And Disk Components In Modern Surveys, Boris Häußler, Marina Vika, Steven P. Bamford, Evelyn J. Johnston, Sarah Brough, Sarah Casura, Benne Holwerda, Lee S. Kelvin, Cristina Popescu Aug 2022

Galapagos-2/Galfitm/Gama – Multi-Wavelength Measurement Of Galaxy Structure: Separating The Properties Of Spheroid And Disk Components In Modern Surveys, Boris Häußler, Marina Vika, Steven P. Bamford, Evelyn J. Johnston, Sarah Brough, Sarah Casura, Benne Holwerda, Lee S. Kelvin, Cristina Popescu

Faculty Scholarship

Aims. We present the capabilities of GALAPAGOS-2 and GALFITM in the context of fitting two-component profiles – bulge–disk decompositions – to galaxies, with the ultimate goal of providing complete multi-band, multi-component fitting of large samples of galaxies in future surveys. We also release both the code and the fit results to 234 239 objects from the DR3 of the GAMA survey, a sample significantly deeper than in previous works.

Methods. We use stringent tests on both simulated and real data, as well as comparison to public catalogues to evaluate the advantages of using multi-band over single-band data.

Results. We show …


Galaxy And Mass Assembly: Group And Field Galaxy Morphologies In The Star-Formation Rate - Stellar Mass Plane, W. J. Pearson, L. Wang, S. Brough, Benne Holwerda, A. M. Hopkins, J. Loveday Jan 2021

Galaxy And Mass Assembly: Group And Field Galaxy Morphologies In The Star-Formation Rate - Stellar Mass Plane, W. J. Pearson, L. Wang, S. Brough, Benne Holwerda, A. M. Hopkins, J. Loveday

Faculty Scholarship

Aims. We study the environment in which a galaxy lies (i.e. field or group) and its connection with the morphology of the galaxy. This is done by examining the distribution of parametric and non-parametric statistics across the star-formation rate (SFR) - stellar mass (M?) plane and studying how these distributions change with the environment in the local universe (z < 0.15). Methods. We determine the concentration (C), Gini, M20, asymmetry, Gini-M20 bulge statistic (GMB), 50% light radius (r50), total Sérsic index, and bulge Sérsic index (nBulge) for galaxies from the Galaxy and Mass Assembly (GAMA) survey using optical images from the Kilo Degree Survey. We determine the galaxy environment using the GAMA group catalogue and split the galaxies into field or group galaxies. The group galaxies are further divided by the group halo mass (Mh) - 11 ≤ log(Mh /M*) < 12, 12 ≤ log(Mh /M*) < 13, and 13 ≤ log(Mh /M*) < 14 - and into central and satellite galaxies. The galaxies in each of these samples are then placed onto the SFR-M? plane, and each parameter is used as a third dimension. We fit the resulting distributions for each parameter in each sample using two two-dimensional Gaussian distributions: one for star-forming galaxies and one for quiescent galaxies. The coefficients of these Gaussian fits are then compared between environments. Results. Using C and r50, we find that galaxies typically become larger as the group mass increases. This change is greater for larger galaxies. There is no indication that galaxies are typically more or less clumpy as the environment changes. Using GMB and nBulge , we see that the star-forming galaxies do not become more bulge or disk dominated as the group mass changes. Asymmetry does not appear to be greatly influenced by environment.


Tracing The Anemic Stellar Halo Of M 101, In Sung Jang, Roelof S. De Jong, Benne W. Holwerda, Antonela Monachesi, Eric F. Bell, Jeremy Bailin May 2020

Tracing The Anemic Stellar Halo Of M 101, In Sung Jang, Roelof S. De Jong, Benne W. Holwerda, Antonela Monachesi, Eric F. Bell, Jeremy Bailin

Faculty Scholarship

Models of galaxy formation in a cosmological context predict that massive disk galaxies should have structured extended stellar halos. Recent studies in integrated light, however, report that a few galaxies, including the nearby disk galaxy M 101, have no measurable stellar halos to the detection limit. We aim to quantify the stellar content and structure of M 101's outskirts by resolving its stars. We present the photometry of its stars based on deep F606W and F814W images taken with Hubble Space Telescope (HST) as part of the GHOSTS survey. The HST fields are placed along the east and west sides …


Galaxy And Mass Assembly (Gama): Properties And Evolution Of Red Spiral Galaxies, Smriti Mahajan, Kriti Kamal Gupta, Rahul Rana, M. J.I. Brown, S. Phillipps, Joss Bland-Hawthorn, M. N. Bremer, S. Brough, Benne W. Holwerda, A. M. Hopkins, J. Loveday, Kevin Pimbblet, Lingyu Wang Jan 2020

Galaxy And Mass Assembly (Gama): Properties And Evolution Of Red Spiral Galaxies, Smriti Mahajan, Kriti Kamal Gupta, Rahul Rana, M. J.I. Brown, S. Phillipps, Joss Bland-Hawthorn, M. N. Bremer, S. Brough, Benne W. Holwerda, A. M. Hopkins, J. Loveday, Kevin Pimbblet, Lingyu Wang

Faculty Scholarship

We use multiwavelength data from the Galaxy And Mass Assembly (GAMA) survey to explore the cause of red optical colours in nearby (0.002 < z < 0.06) spiral galaxies. We show that the colours of red spiral galaxies are a direct consequence of some environment-related mechanism(s) that has removed dust and gas, leading to a lower star formation rate. We conclude that this process acts on long time-scales (several Gyr) due to a lack of morphological transformation associated with the transition in optical colour. The specific star formation rate (sSFR) and dust-to-stellar mass ratio of red spiral galaxies is found to be statistically lower than blue spiral galaxies. On the other hand, red spirals are on average 0.9 dex more massive, and reside in environments 2.6 times denser than their blue counterparts. We find no evidence of excessive nuclear activity, or higher inclination angles to support these as the major causes for the red optical colours seen in ≳47 per cent of all spirals in our sample. Furthermore, for a small subsample of our spiral galaxies that are detected in H I, we find that the SFR of gas-rich red spiral galaxies is lower by ∼1 dex than their blue counterparts.


A Second Galaxy Missing Dark Matter In The Ngc 1052, Pieter Van Dokkum, Shany Danieli, Roberto Abraham, Charlie Conroy, Aaron Romanowsky Mar 2019

A Second Galaxy Missing Dark Matter In The Ngc 1052, Pieter Van Dokkum, Shany Danieli, Roberto Abraham, Charlie Conroy, Aaron Romanowsky

Faculty Publications

The ultra-diffuse galaxy NGC1052-DF2 has a very low velocity dispersion, indicating that it has little or no dark matter. Here we report the discovery of a second galaxy in this class, residing in the same group. NGC1052-DF4 closely resembles NGC1052-DF2 in terms of its size, surface brightness, and morphology; has a similar distance of Dsbf =  19.9 2.8 Mpc; and also has a population of luminous globular clusters extending out to 7 kpc from the center of the galaxy. Accurate radial velocities of the diffuse galaxy light and seven of the globular clusters were obtained with the Low Resolution …


A Second Galaxy Missing Dark Matter In The Ngc 1052 Group, Pieter Van Dokkum, Shany Danieli, Roberto Abraham, Charlie Conroy, Aaron Romanowsky Mar 2019

A Second Galaxy Missing Dark Matter In The Ngc 1052 Group, Pieter Van Dokkum, Shany Danieli, Roberto Abraham, Charlie Conroy, Aaron Romanowsky

Faculty Publications

The ultra-diffuse galaxy NGC1052-DF2 has a very low velocity dispersion, indicating that it has little or no dark matter. Here we report the discovery of a second galaxy in this class, residing in the same group. NGC1052-DF4closely resembles NGC1052-DF2 in terms of its size, surface brightness, and morphology; has a similar distance of Dsbf = 19.9 +/- 2.8 Mpc; and also has a population of luminous globular clusters extending out to >7 kpc from the center of the galaxy. Accurate radial velocities of the diffuse galaxy light and seven of the globular clusters were obtained with the Low Resolution Imaging …


Galaxy And Mass Assembly (Gama): Time-Scales For Galaxies Crossing The Green Valley, S. Phillipps, M. N. Bremer, A. M. Hopkins, R. De Propris, E. N. Taylor, P. A. James, L. J.M. Davies, M. E. Cluver, S. P. Driver, S. A. Eales, Benne W. Holwerda, L. S. Kelvin, A. E. Sansom Mar 2019

Galaxy And Mass Assembly (Gama): Time-Scales For Galaxies Crossing The Green Valley, S. Phillipps, M. N. Bremer, A. M. Hopkins, R. De Propris, E. N. Taylor, P. A. James, L. J.M. Davies, M. E. Cluver, S. P. Driver, S. A. Eales, Benne W. Holwerda, L. S. Kelvin, A. E. Sansom

Faculty Scholarship

We explore the constraints that can be placed on the evolutionary time-scales for typical low-redshift galaxies evolving from the blue cloud through the green valley and on to the red sequence. We utilize galaxies from the GAMA survey with 0.1 < z < 0.2 and classify them according to the intrinsic (u∗ - r∗) colours of their stellar populations, as determined by fits to their multiwavelength spectral energy distributions. Using these fits to also determine stellar population ages and star formation time-scales, we argue that our results are consistent with a green valley population dominated by galaxies that are simply decreasing their star formation (running out of gas) over a time-scale of 2-4 Gyr which are seen at a specific epoch in their evolution (approximately 1.6 e-folding times after their peak in star formation). If their fitted star formation histories are extrapolated forward, the green galaxies will further redden over time, until they attain the colours of a passive population. In this picture, no specific quenching event which cuts-off their star formation is required, though it remains possible that the decline in star formation in green galaxies may be expedited by internal or external forces. However, there is no evidence that green galaxies have recently changed their star formation time-scales relative to their previous longer term star formation histories.


Mirach’S Goblin: Discovery Of A Dwarf Spheroidal Galaxy Behind The Andromeda Galaxy, David Martínez-Delgado, Eva Grebel, Behnam Javanmardi, Walter Boschin, Nicolas Longeard, Julio Carballo-Bello, Dmitry Makarov, Michael Beasley, Giuseppe Donatiello, Martha Haynes, Duncan Forbes, Aaron Romanowsky Dec 2018

Mirach’S Goblin: Discovery Of A Dwarf Spheroidal Galaxy Behind The Andromeda Galaxy, David Martínez-Delgado, Eva Grebel, Behnam Javanmardi, Walter Boschin, Nicolas Longeard, Julio Carballo-Bello, Dmitry Makarov, Michael Beasley, Giuseppe Donatiello, Martha Haynes, Duncan Forbes, Aaron Romanowsky

Faculty Publications

Context. It is of broad interest for galaxy formation theory to carry out a full inventory of the numbers and properties of dwarf galaxies, both satellite and isolated, in the Local Volume.Aims. Ultra-deep imaging in wide areas of the sky with small amateur telescopes can help to complete the census of these hitherto unknown low-surface-brightness galaxies, which cannot be detected by the current resolved stellar population and HI surveys. We report the discovery of Donatiello I, a dwarf spheroidal galaxy located one degree from the star Mirach (β And) in a deep image taken with an amateur telescope.Methods. The color-magnitude …


Chromodynamical Analysis Of Lenticular Galaxies Using Globular Clusters And Planetary Nebulae, Emilio Zanatta, Arianna Cortesi, Ana Chies-Santos, Duncan Forbes, Aaron Romanowsky, Adebusola Alabi, Lodovico Coccato, Claudia Mendes De Oliveira, Jean Brodie, Michael Merrifield Oct 2018

Chromodynamical Analysis Of Lenticular Galaxies Using Globular Clusters And Planetary Nebulae, Emilio Zanatta, Arianna Cortesi, Ana Chies-Santos, Duncan Forbes, Aaron Romanowsky, Adebusola Alabi, Lodovico Coccato, Claudia Mendes De Oliveira, Jean Brodie, Michael Merrifield

Faculty Publications

Recovering the origins of lenticular galaxies can shed light on the understanding of galaxy and compare them with the kinematics of planetary nebulae (PNe). The PNe and GC data come from the Planetary Nebulae Spectrograph and the SLUGGS Surveys. Through photometric spheroid-disc decomposition and PNe kinematics. we find the probability for a given GC to belong to either the spheroid or the disc of its host galaxy or be rejected from the model. We find that there is no correlation between the components that the GCs are likely to belong to and their colours. Particularly, for NGC 2768, we find …


The Distance Of The Dark Matter Deficient Galaxy Ngc 1052–Df2, Pieter Van Dokkum, Shany Danieli, Yotam Cohen, Aaron Romanowsky, Charlie Conroy Aug 2018

The Distance Of The Dark Matter Deficient Galaxy Ngc 1052–Df2, Pieter Van Dokkum, Shany Danieli, Yotam Cohen, Aaron Romanowsky, Charlie Conroy

Faculty Publications

We recently inferred that the galaxy NGC 1052–DF2 has little or no dark matter and a rich system of unusual globular clusters. We assumed that the galaxy is a satellite of the luminous elliptical galaxy NGC 1052 at ≈20 Mpc, on the basis of its surface brightness fluctuations (SBFs) distance of 19.0 ± 1.7 Mpc, its radial velocity of ≈1800 km s−1, and its projected position. Here we analyze the color–magnitude diagram (CMD) of NGC 1052–DF2, following the suggestion by Trujillo et al. that the tip of the red giant branch (TRGB) can be detected in currently available Hubble Space …


Galaxy And Mass Assembly (Gama): Variation In Galaxy Structure Across The Green Valley, Lee S. Kelvin, Malcolm N. Bremer, Steven Phillipps, Philip A. James, Luke J.M. Davies, Roberto De Propris, Amanda J. Moffett, Susan M. Percival, Ivan K. Baldry, Chris A. Collins, Mehmet Alpaslan, Joss Bland-Hawthorn, Sarah Brough, Michelle Cluver, Simon P. Driver, Abdolhosein Hashemizadeh, Benne W. Holwerda, Jarkko Laine, Maritza A. Lara-Lopez, Jochen Liske, Witold Maciejewski, Nicola R. Napolitano, Samantha J. Penny, Cristina C. Popescu, Anne E. Sansom, Will Sutherland, Edward N. Taylor, Eelco Van Kampen, Lingyu Wang Jul 2018

Galaxy And Mass Assembly (Gama): Variation In Galaxy Structure Across The Green Valley, Lee S. Kelvin, Malcolm N. Bremer, Steven Phillipps, Philip A. James, Luke J.M. Davies, Roberto De Propris, Amanda J. Moffett, Susan M. Percival, Ivan K. Baldry, Chris A. Collins, Mehmet Alpaslan, Joss Bland-Hawthorn, Sarah Brough, Michelle Cluver, Simon P. Driver, Abdolhosein Hashemizadeh, Benne W. Holwerda, Jarkko Laine, Maritza A. Lara-Lopez, Jochen Liske, Witold Maciejewski, Nicola R. Napolitano, Samantha J. Penny, Cristina C. Popescu, Anne E. Sansom, Will Sutherland, Edward N. Taylor, Eelco Van Kampen, Lingyu Wang

Faculty Scholarship

Using a sample of 472 local Universe (z < 0.06) galaxies in the stellar mass range 10.25 < logM*/M⊙ < 10.75, we explore the variation in galaxy structure as a function of morphology and galaxy colour. Our sample of galaxies is subdivided into red, green, and blue colour groups and into elliptical and non-elliptical (disk-type) morphologies. Using Kilo- Degree Survey (KiDS) and Visible and Infrared Survey Telescope for Astronomy (VISTA) Kilo-Degree Infrared Galaxy Survey (VIKING) derived postage stamp images, a group of eight volunteers visually classified bars, rings, morphological lenses, tidal streams, shells, and signs of merger activity for all systems. We find a significant surplus of rings (2.3s) and lenses (2.9s) in disk-type galaxies as they transition across the green valley. Combined, this implies a joint ring/lens green valley surplus significance of 3.3s relative to equivalent disk-types within either the blue cloud or the red sequence. We recover a bar fraction of ~44 per cent which remains flat with colour, however, we find that the presence of a bar acts to modulate the incidence of rings and (to a lesser extent) lenses, with rings in barred disk-type galaxies more common by ~20-30 percentage points relative to their unbarred counterparts, regardless of colour. Additionally, green valley disk-type galaxies with a bar exhibit a significant 3.0s surplus of lenses relative to their blue/red analogues. The existence of such structures rules out violent transformative events as the primary end-of-life evolutionary mechanism, with a more passive scenario the favoured candidate for the majority of galaxies rapidly transitioning across the green valley.


Galaxy And Mass Assembly (Gama): Morphological Transformation Of Galaxies Across The Green Valley, M. N. Bremer, S. Phillipps, S. Kelvin, R. De Propris, Rebecca Kennedy, Amanda J. Moffett, S. Bamford, L. J.M. Davies, S. P. Driver, B. Häußler, Benne W. Holwerda, A. Hopkins, P. A. James, J. Liske, S. Percival, N. Taylor May 2018

Galaxy And Mass Assembly (Gama): Morphological Transformation Of Galaxies Across The Green Valley, M. N. Bremer, S. Phillipps, S. Kelvin, R. De Propris, Rebecca Kennedy, Amanda J. Moffett, S. Bamford, L. J.M. Davies, S. P. Driver, B. Häußler, Benne W. Holwerda, A. Hopkins, P. A. James, J. Liske, S. Percival, N. Taylor

Faculty Scholarship

We explore constraints on the joint photometric and morphological evolution of typical low redshift galaxies as they move from the blue cloud through the green valley and on to the red sequence. We select Galaxy And Mass Assembly (GAMA) survey galaxies with 10.25 < log(M*/Mo˙) < 10.75 and z < 0.2 classified according to their intrinsic u* - r* colour. From single component Śersic fits, we find that the stellar mass-sensitive K-band profiles of red and green galaxy populations are very similar while g-band profiles indicate more disc-like morphologies for the green galaxies: apparent (optical) morphological differences arise primarily from radial mass-to-light ratio variations. Two-component fits show that most green galaxies have significant bulge and disc components and that the blue to red evolution is driven by colour change in the disc. Together, these strongly suggest that galaxies evolve from blue to red through secular disc fading and that a strong bulge is present prior to any decline in star formation. The relative abundance of the green population implies a typical time-scale for traversing the green valley ~1-2 Gyr and is independent of environment, unlike that of the red and blue populations. While environment likely plays a role in triggering the passage across the green valley, it appears to have little effect on time taken. These results are consistent with a green valley population dominated by (early type) disc galaxies that are insufficiently supplied with gas to maintain previous levels of disc star formation, eventually attaining passive colours. No single event is needed to quench their star formation.


Galaxy And Mass Assembly (Gama): Blue Spheroids Within 87 Mpc, Smriti Mahajan, Michael J. Drinkwater, S. Driver, A. M. Hopkins, Alister W. Graham, S. Brough, Michael J.I. Brown, Benne W. Holwerda, Matt S. Owers, Kevin A. Pimbblet Mar 2018

Galaxy And Mass Assembly (Gama): Blue Spheroids Within 87 Mpc, Smriti Mahajan, Michael J. Drinkwater, S. Driver, A. M. Hopkins, Alister W. Graham, S. Brough, Michael J.I. Brown, Benne W. Holwerda, Matt S. Owers, Kevin A. Pimbblet

Faculty Scholarship

In this paper, we test if nearby blue spheroid (BSph) galaxies may become the progenitors of star-forming spiral galaxies or passively evolving elliptical galaxies. Our sample comprises 428 galaxies of various morphologies in the redshift range 0.002 < Ζ < 0.02 (8-87 Mpc) with panchromatic data from the Galaxy and Mass Assembly survey. We find that BSph galaxies are structurally (mean effective surface brightness, effective radius) very similar to their passively evolving red counterparts. However, their star formation and other properties such as colour, age, and metallicity are more like star-forming spirals than spheroids (ellipticals and lenticulars). We show that BSph galaxies are statistically distinguishable from other spheroids as well as spirals in the multidimensional space mapped by luminosity-weighted age, metallicity, dust mass, and specific star formation rate. We use HI data to reveal that some of the BSphs are (further) developing their discs, hence their blue colours. They may eventually become spiral galaxies - if sufficient gas accretion occurs - or more likely fade into low-mass red galaxies.


Galaxy And Mass Assembly: Automatic Morphological Classification Of Galaxies Using Statistical Learning, Sreevarsha Sreejith, Sergiy Pereverzyev, Lee S. Kelvin, Francine R. Marleau, Markus Haltmeier, Judith Ebner, Joss Bland-Hawthorn, Simon P. Driver, Alister W. Graham, Benne W. Holwerda, Andrew M. Hopkins, Jochen Liske, Jon Loveday, Amanda J. Moffett, Kevin A. Pimbblet, Edward N. Taylor, Lingyu Wang, Angus H. Wright Mar 2018

Galaxy And Mass Assembly: Automatic Morphological Classification Of Galaxies Using Statistical Learning, Sreevarsha Sreejith, Sergiy Pereverzyev, Lee S. Kelvin, Francine R. Marleau, Markus Haltmeier, Judith Ebner, Joss Bland-Hawthorn, Simon P. Driver, Alister W. Graham, Benne W. Holwerda, Andrew M. Hopkins, Jochen Liske, Jon Loveday, Amanda J. Moffett, Kevin A. Pimbblet, Edward N. Taylor, Lingyu Wang, Angus H. Wright

Faculty Scholarship

We apply four statistical learning methods to a sample of 7941 galaxies (z < 0.06) from the Galaxy And Mass Assembly survey to test the feasibility of using automated algorithms to classify galaxies. Using 10 features measured for each galaxy (sizes, colours, shape parameters, and stellar mass), we apply the techniques of Support Vector Machines, Classification Trees, Classification Trees with Random Forest (CTRF) and Neural Networks, and returning True Prediction Ratios (TPRs) of 75.8 per cent, 69.0 per cent, 76.2 per cent, and 76.0 per cent, respectively. Those occasions whereby all four algorithms agree with each other yet disagree with the visual classification ('unanimous disagreement') serves as a potential indicator of human error in classification, occurring in ~ 9 per cent of ellipticals, ~ 9 per cent of little blue spheroids, ~ 14 per cent of early-type spirals, ~ 21 per cent of intermediate-type spirals, and ~ 4 per cent of late-type spirals and irregulars. We observe that the choice of parameters rather than that of algorithms is more crucial in determining classification accuracy. Due to its simplicity in formulation and implementation, we recommend the CTRF algorithm for classifying future galaxy data sets. Adopting the CTRF algorithm, the TPRs of the five galaxy types are: E, 70.1 per cent; LBS, 75.6 per cent; S0-Sa, 63.6 per cent; Sab-Scd, 56.4 per cent, and Sd-Irr, 88.9 per cent. Further, we train a binary classifier using this CTRF algorithm that divides galaxies into spheroid-dominated (E, LBS, and S0-Sa) and disc-dominated (Sab-Scd and Sd-Irr), achieving an overall accuracy of 89.8 per cent. This translates into an accuracy of 84.9 per cent for spheroid-dominated systems and 92.5 per cent for disc-dominated systems.


The Stellar Initial Mass Function In Early-Type Galaxies From Absorption Line Spectroscopy. Iii. Radial Gradients, Pieter Van Dokkum, Charlie Conroy, Alexa Villaume, Jean Brodie, Aaron Romanowsky May 2017

The Stellar Initial Mass Function In Early-Type Galaxies From Absorption Line Spectroscopy. Iii. Radial Gradients, Pieter Van Dokkum, Charlie Conroy, Alexa Villaume, Jean Brodie, Aaron Romanowsky

Faculty Research, Scholarly, and Creative Activity

No abstract provided.


A Dust Component ~2 Kpc Above The Plane In Ngc 891., P. Kamphuis, Benne W. Holwerda, R. J. Allen, R. F. Peletier, P. C. Van Der Kruit Mar 2017

A Dust Component ~2 Kpc Above The Plane In Ngc 891., P. Kamphuis, Benne W. Holwerda, R. J. Allen, R. F. Peletier, P. C. Van Der Kruit

Benne Holwerda

Context.The halo of NGC 891 has been the subject of studies for more than a decade. One of its most striking features is the large asymmetry in H emission. In this letter, we will take a quantitative look at this asymmetry at different wavelengths for the first time. Aims.We suggest that NGC 891 is intrinsically almost symmetric and the large asymmetry in H emission is mostly due to dust attenuation. We will quantify the additional optical depth needed to cause the observed asymmetry in this model.Methods.By comparing large strips on the North East side of the galaxy with strips covering …


An Extended Dust Disk In A Spiral Galaxy : An Occulting Galaxy Pair In The Acs Nearby Galaxy Survey Treasury., Benne W. Holwerda, W. C. Keel, B. Williams, J. J. Dalcanton, R. S. De Jong Mar 2017

An Extended Dust Disk In A Spiral Galaxy : An Occulting Galaxy Pair In The Acs Nearby Galaxy Survey Treasury., Benne W. Holwerda, W. C. Keel, B. Williams, J. J. Dalcanton, R. S. De Jong

Benne Holwerda

We present an analysis of an occulting galaxy pair, serendipitously discovered in the ACS Nearby Galaxy Survey Treasury observations of NGC 253 taken with the Hubble Space Telescope’s (HST) Advanced Camera for Surveys in F475W, F606W, and F814W (SDSS − g, broad V, and I). The foreground disk system (at z 0.06) shows a dusty disk much more extended than the starlight, with spiral lanes seen in extinction out to 1.5 R25, approximately 6 half-light radii. This pair is the first where extinction can be mapped reliably out to this distance from the center. The spiral arms of the extended …


The Unusual Vertical Mass Distribution Of Ngc 4013 Seen Through The Spitzer Survey Of Stellar Structure In Galaxies (S4g)., Sebastien Comeron, Bruce G. Elmegreen, Johan H. Knapen, Kartik Sheth, Joannah L. Hinz, Michael W. Regan, Armando Gil De Paz, Juan Carlos Munoz-Mateos, Karin Menendez-Delmestre, Mark Seibert, Taehyun Kim, Trisha Mizusawa, Eija Laurikainen, Heikki Salo, Jarkko Laine, E. Athanassoula, Albert Bosma, Ronald J. Buta, Dimitri A. Gadotti, Luis C. Ho, Benne W. Holwerda, Eva Schinnerer, Dennis Zaritsky Mar 2017

The Unusual Vertical Mass Distribution Of Ngc 4013 Seen Through The Spitzer Survey Of Stellar Structure In Galaxies (S4g)., Sebastien Comeron, Bruce G. Elmegreen, Johan H. Knapen, Kartik Sheth, Joannah L. Hinz, Michael W. Regan, Armando Gil De Paz, Juan Carlos Munoz-Mateos, Karin Menendez-Delmestre, Mark Seibert, Taehyun Kim, Trisha Mizusawa, Eija Laurikainen, Heikki Salo, Jarkko Laine, E. Athanassoula, Albert Bosma, Ronald J. Buta, Dimitri A. Gadotti, Luis C. Ho, Benne W. Holwerda, Eva Schinnerer, Dennis Zaritsky

Benne Holwerda

NGC 4013 is a nearby Sb edge-on galaxy known for its “prodigious” H i warp and its “giant” tidal stream. Previous work on this unusual object shows that it cannot be fitted satisfactorily by a canonical thin+thick disk structure. We have produced a new decomposition of NGC 4013, considering three stellar flattened components (thin+thick disk plus an extra and more extended component) and one gaseous disk. All four components are considered to be gravitationally coupled and isothermal. To do so, we have used the 3.6μm images from the Spitzer Survey of Stellar Structure in Galaxies. We find evidence for NGC …


The Thick Disk In The Galaxy Ngc 4244 From S4g Imaging., Sebastien Comeron, Johan H. Knapen, Kartik Sheth, Michael Regan, Joannah L. Hinz, Armando Gil De Paz, Karin Menendez-Delmestre, Juan Carlos Munoz-Mateos, Mark Seibert, Taehyun Kim, E. Athanassoula, Albert Bosma, Ronald J. Buta, Bruce G. Elmegreen, Luis C. Ho, Benne W. Holwerda, Eija Laurikainen, Heikki Salo, Eva Schinnerer Mar 2017

The Thick Disk In The Galaxy Ngc 4244 From S4g Imaging., Sebastien Comeron, Johan H. Knapen, Kartik Sheth, Michael Regan, Joannah L. Hinz, Armando Gil De Paz, Karin Menendez-Delmestre, Juan Carlos Munoz-Mateos, Mark Seibert, Taehyun Kim, E. Athanassoula, Albert Bosma, Ronald J. Buta, Bruce G. Elmegreen, Luis C. Ho, Benne W. Holwerda, Eija Laurikainen, Heikki Salo, Eva Schinnerer

Benne Holwerda

If thick disks are ubiquitous and a natural product of disk galaxy formation and/or evolution processes, all undisturbed galaxies that have evolved during a significant fraction of a Hubble time should have a thick disk. The late-type spiral galaxy NGC 4244 has been reported as the only nearby edge-on galaxy without a confirmed thick disk. Using data from the Spitzer Survey of Stellar Structure in Galaxies (S4G) we have identified signs of two disk components in this galaxy. The asymmetries between the light profiles on both sides of the mid-plane of NGC 4244 can be explained by a combination of …


The Onset Of Warps In Spitzer Observations Of Edge-On Spiral Galaxies., Kanak Saha, Roelof De Jong, Benne W. Holwerda Mar 2017

The Onset Of Warps In Spitzer Observations Of Edge-On Spiral Galaxies., Kanak Saha, Roelof De Jong, Benne W. Holwerda

Benne Holwerda

We analyse warps in the nearby edge-on spiral galaxies observed in the Spitzer/Infrared Array Camera (IRAC )4.5-μm band. In our sample of 24 galaxies, we find evidence of warp in 14 galaxies. We estimate the observed onset radii for the warps in a subsample of 10 galaxies. The dark matter distribution in each of these galaxies are calculated using the mass distribution derived from the observed light distribution and the observed rotation curves. The theoretical predictions of the onset radii for the warps are then derived by applying a self-consistent linear response theory to the obtained mass models for six …


The Ghosts Survey. I. Hubble Space Telescope Advanced Camera For Surveys Data., D. J. Radburn-Smith, R. S. De Jong, A. C. Seth, J. Bailin, E. F. Bell, T. M. Brown, J. S. Bullock, S. Courteau, J. J. Dalcanton, H. C. Ferguson, P. Goudfrooij, S. Holfeltz, Benne W. Holwerda, C. Purcell, J. Sick, D. Streich, M. Vlajic, D. B. Zucker Mar 2017

The Ghosts Survey. I. Hubble Space Telescope Advanced Camera For Surveys Data., D. J. Radburn-Smith, R. S. De Jong, A. C. Seth, J. Bailin, E. F. Bell, T. M. Brown, J. S. Bullock, S. Courteau, J. J. Dalcanton, H. C. Ferguson, P. Goudfrooij, S. Holfeltz, Benne W. Holwerda, C. Purcell, J. Sick, D. Streich, M. Vlajic, D. B. Zucker

Benne Holwerda

We present an overview of the GHOSTS survey, the largest study to date of the resolved stellar populations in the outskirts of disk galaxies. The sample consists of 14 disk galaxies within 17 Mpc, whose outer disks and halos are imaged with the Hubble Space Telescope Advanced Camera for Surveys (ACS). In the first paper of this series, we describe the sample, explore the benefits of using resolved stellar populations, and discuss our ACS F606W and F814W photometry. We use artificial star tests to assess completeness and use overlapping regions to estimate photometric uncertainties. The median depth of the survey …


Thick Disks Of Edge-On Galaxies Seen Through The Spitzer Survey Of Stellar Structure In Galaxies (S4g) : Lair Of Missing Baryons?, Sebastien Comeron, Bruce G. Elmegreen, Johan H. Knapen, Heikki Salo, Eija Laurikainen, Jarkko Laine, E. Athanassoula, Albert Bosma, Kartik Sheth, Michael W. Regan, Joannah L. Hinz, Armando Gil De Paz, Karin Menendez-Delmestre, Trisha Mizusawa, Juan Carlos Munoz-Mateos, Mark Seibert, Taehyun Kim, Debra M. Elmegreen, Dimitri A. Gadotti, Luis C. Ho, Benne W. Holwerda, Jani Lappalainen, Eva Schinnerer, Ramin Skibba Mar 2017

Thick Disks Of Edge-On Galaxies Seen Through The Spitzer Survey Of Stellar Structure In Galaxies (S4g) : Lair Of Missing Baryons?, Sebastien Comeron, Bruce G. Elmegreen, Johan H. Knapen, Heikki Salo, Eija Laurikainen, Jarkko Laine, E. Athanassoula, Albert Bosma, Kartik Sheth, Michael W. Regan, Joannah L. Hinz, Armando Gil De Paz, Karin Menendez-Delmestre, Trisha Mizusawa, Juan Carlos Munoz-Mateos, Mark Seibert, Taehyun Kim, Debra M. Elmegreen, Dimitri A. Gadotti, Luis C. Ho, Benne W. Holwerda, Jani Lappalainen, Eva Schinnerer, Ramin Skibba

Benne Holwerda

Most, if not all, disk galaxies have a thin (classical) disk and a thick disk. In most models thick disks are thought to be a necessary consequence of the disk formation and/or evolution of the galaxy. We present the results of a study of the thick disk properties in a sample of carefully selected edge-on galaxies with types ranging from T = 3 to T = 8. We fitted one-dimensional luminosity profiles with physically motivated functions—the solutions of two stellar and one gaseous isothermal coupled disks in equilibrium—which are likely to yield more accurate results than other functions used in …


Herschel/Spire Observations Of The Dusty Disk Of Ngc 4244., Benne W. Holwerda, S. Bianchi, T. Boker, D. Radburn-Smith, R. S. De Jong, M. Baes, P. C. Van Der Kruit, M. Xilouris, K. D. Gordon, J. J. Dalcanton Mar 2017

Herschel/Spire Observations Of The Dusty Disk Of Ngc 4244., Benne W. Holwerda, S. Bianchi, T. Boker, D. Radburn-Smith, R. S. De Jong, M. Baes, P. C. Van Der Kruit, M. Xilouris, K. D. Gordon, J. J. Dalcanton

Benne Holwerda

We present Herschel/SPIRE images at 250, 350, and 500 μm of NGC 4244, a typical low-mass, disk-only and edge-on spiral galaxy. The dust disk is clumpy and shows signs of truncation at the break radius of the stellar disk. This disk coincides with the densest part of the Hi disk. We compare the spectral energy distribution (SED), including the new SPIRE fluxes, to 3D radiative transfer models; a smooth model disk and a clumpy model with embedded heating. Each model requires a very high value for the dust scale-length (hd = 2−5 h∗), higher dust masses than previous models of …


Quantified H I Morphology : Vi. The Morphology Of Extended Discs In Uv And H I., Benne W. Holwerda, N. Pirzkal, J. S. Heiner Mar 2017

Quantified H I Morphology : Vi. The Morphology Of Extended Discs In Uv And H I., Benne W. Holwerda, N. Pirzkal, J. S. Heiner

Benne Holwerda

Extended ultraviolet (XUV) discs have been found in a substantial fraction of late-type – S0, spiral and irregular – galaxies. Similarly, most late-type spirals have an extended gas disc, observable in the 21-cm radio line (H i). The morphology of galaxies can be quantified well using a series of scale-invariant parameters; concentration-asymmetry-smoothness (CAS), Gini, M20, and GM parameters. In this series of papers, we apply these to H i column density maps to identify mergers and interactions, lopsidedness and now XUV discs. In this paper, we compare the quantified morphology and effective radius (R50) of the Westerbork observations of neutral …


Quantified H I Morphology – I. Multi-Wavelength Analysis Of The Things Galaxies., Benne W. Holwerda, N. Pirzkal, W. J. G. De Blok, A. Bouchard, S. -L. Blyth, K. J. Van Der Heyden, E. C. Elson Mar 2017

Quantified H I Morphology – I. Multi-Wavelength Analysis Of The Things Galaxies., Benne W. Holwerda, N. Pirzkal, W. J. G. De Blok, A. Bouchard, S. -L. Blyth, K. J. Van Der Heyden, E. C. Elson

Benne Holwerda

Galaxy evolution is driven to a large extent by interactions and mergers with other galaxies and the gas in galaxies is extremely sensitive to the interactions. One method to measure such interactions uses the quantified morphology of galaxy images. Well-established parameters are Concentration, Asymmetry, Smoothness, Gini and M20 of a galaxy image. Thus far, the application of this technique has mostly been restricted to rest-frame ultraviolet and optical images. However, with the new radio observatories being commissioned [South African Karoo Array Telescope (MeerKAT), Australian SKA Pathfinder (ASKAP), Extended Very Large Array (EVLA), Westerbork Synthesis Radio Telescope/APERture Tile In Focus instrument …