Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy

PDF

Galaxies

Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 257

Full-Text Articles in Physical Sciences and Mathematics

Neutrino’S Non-Zero Electric Potential As An Origin Of Gravitation, Domain Structure And Expansion Of The Universe., Polievkt Perov Mar 2024

Neutrino’S Non-Zero Electric Potential As An Origin Of Gravitation, Domain Structure And Expansion Of The Universe., Polievkt Perov

College of Arts & Sciences Faculty Works

The axial electric potentials of neutrinos as neutral composite structures, while being very small at large distances, do not vanish, and the same can be said about the neutrino “asymmetric dipoles” (paired neutrinos of not the same kind). Depending on the orientation of the “asymmetric dipole”, its far-field electric potential in some direction can be positive or negative, interacting with other “dipoles” at that large distance attractively or repulsively depending on their mutual orientation. The mutual orientation of the dipoles locally (inside a galaxy) might be such that they are aligned and experience the attractive force toward the local center …


Exploring The Mass To Light Ratio Of Massive Galaxies With The Rubin Dp0 Preview Dataset, Denvir Joy Higgins Jun 2023

Exploring The Mass To Light Ratio Of Massive Galaxies With The Rubin Dp0 Preview Dataset, Denvir Joy Higgins

Physics

The Vera C. Rubin Observatory will perform the 10-year long Legacy Survey of Space and Time expected to begin in 2024. LSST will cover the Southern Hemisphere, collecting over two million images with an 8.4-meter telescope and 3200-pixel camera. In collaboration with the scientific community and based on the Outer Rim Simulation \citep{heit19}, the Rubin Observatory released a simulated dataset (DP0) of the data that is expected to be in hand at the 5-year mark. Using this simulated dataset, I have explored the number and luminosity of the most massive local galaxies. Using a sample of the brightest, closest galaxies …


The Search For Heavily Obscured Active Galactic Nuclei In The Local Universe, Ross Silver May 2023

The Search For Heavily Obscured Active Galactic Nuclei In The Local Universe, Ross Silver

All Dissertations

Active galactic nuclei (AGN) are supermassive black holes (SMBHs) in the center of galaxies that accrete surrounding gas and emit across the entire electromagnetic spectrum. They are the most energetic persistent emitters in the Universe, capable of outshining their host galaxies despite their emission originating from a region smaller than our Solar System. AGN were some of the first sources discovered that helped teach us that there were galaxies outside of our own, and they proved the existence of black holes. Moreover, AGN can give us valuable insights into other branches of astrophysics. For example, they can be used to …


The Loneliest Galaxies In The Universe: A Gama And Galaxy Zoo Study On Void Galaxy Morphology., Lori E. Porter May 2023

The Loneliest Galaxies In The Universe: A Gama And Galaxy Zoo Study On Void Galaxy Morphology., Lori E. Porter

College of Arts & Sciences Senior Honors Theses

The large-scale structure (LSS) of the Universe is comprised of galaxy filaments, tendrils, and voids. The majority of the Universe’s volume is taken up by these voids, which exist as underdense, but not empty, regions. The galaxies found inside voids are void galaxies and expected to be some of the most isolated objects in the Universe. However, their standard morphology remains poorly studied. This study, using the Galaxy and Mass Assembly (GAMA) data and Galaxy Zoo survey, aims to remedy this. For completeness purposes, we use void galaxies identified by Alpaslan et al. (2014) with stellar masses (M*) of 10 …


Exploring The Dependence Of Bulges In Spiral Galaxies On Their Environment, William Jackson Clark May 2023

Exploring The Dependence Of Bulges In Spiral Galaxies On Their Environment, William Jackson Clark

Physics Theses & Dissertations

Recent research has shown a relationship between spiral galaxy satellite populations and the size of spiral bulges. The modern cosmological model of our universe (ΛCDM), does not predict this. Instead, ΛCMD predicts that only the total dynamical mass of a host galaxy should be correlated with satellite populations. We investigate this relationship in regimes other than satellites. In this study we compare the bulge to total mass ratios of spiral galaxies to the number of nearby galaxies within “n” Mpc. We use four papers from literature that calculate bulge to total mass ratios of 189 spiral galaxies using …


Galaxy And Mass Assembly (Gama): Low-Redshift Quasars And Inactive Galaxies Have Similar Neighbors, Maria B. Stone, Clare F. Wethers, Roberto De Propris, Jari Kotilainen, Nischal Acharya, Benne W. Holwerda, Jonathan Loveday, Steven Phillipps Apr 2023

Galaxy And Mass Assembly (Gama): Low-Redshift Quasars And Inactive Galaxies Have Similar Neighbors, Maria B. Stone, Clare F. Wethers, Roberto De Propris, Jari Kotilainen, Nischal Acharya, Benne W. Holwerda, Jonathan Loveday, Steven Phillipps

Faculty Scholarship

We explore the properties of galaxies in the proximity (within a ∼2 Mpc radius sphere) of Type I quasars at 0.1 <z <0.35, to check whether and how an active galaxy influences the properties of its neighbors. We further compare these with the properties of neighbors around inactive galaxies of the same mass and redshift within the same volume of space, using the Galaxy and Mass Assembly spectroscopic survey. Our observations reveal no significant difference in properties such as the number of neighbors, morphologies, stellar mass, star formation rates, and star formation history between the neighbors of quasars and those of the comparison sample. This implies that quasar activity in a host galaxy does not significantly affect its neighbors (e.g., via interactions with the jets). Our results suggest that quasar host galaxies do not strongly differ from the average galaxy within the specified mass and redshift range. Additionally, the implication of the relatively minor importance of the environmental effect on and from quasars is that nuclear activity is more likely triggered by internal and secular processes.


A Multidimensional View On The Emission-Line Diagnostics Of The Warm Ionized Gas In Nearby Galaxies, Xihan Ji Jan 2023

A Multidimensional View On The Emission-Line Diagnostics Of The Warm Ionized Gas In Nearby Galaxies, Xihan Ji

Theses and Dissertations--Physics and Astronomy

The baryonic cycle, being a fundamental process that shapes the cosmic ecosystem, describes the transformation and migration of baryonic matter in different phases. The warm ionized interstellar medium (ISM), defined as low-density gas that has temperature of the order of 10,000 K, represents an important link of the baryonic cycle and can be produced by a variety of energetic activities in galaxies, such as star formations, active galactic nuclei, and so forth. More importantly, the formation and evolution of the warm ionized gas not only traces the ongoing activities of the galaxies, but also reveals the past evolution of galaxies …


Near-Infrared Emission Line Diagnostics For Agn From The Local Universe To Z ∼ 3*, Mauro Giavalisco, Et. Al. Jan 2023

Near-Infrared Emission Line Diagnostics For Agn From The Local Universe To Z ∼ 3*, Mauro Giavalisco, Et. Al.

Astronomy Department Faculty Publication Series

Optical rest-frame spectroscopic diagnostics are usually employed to distinguish between star formation and active galactic nucleus (AGN) powered emission. However, this method is biased against dusty sources, hampering a complete census of the AGN population across cosmic epochs. To mitigate this effect, it is crucial to observe at longer wavelengths in the rest-frame near-infrared (near-IR), which is less affected by dust attenuation and can thus provide a better description of the intrinsic properties of galaxies. AGN diagnostics in this regime have not been fully exploited so far, due to the scarcity of near-IR observations of both AGN and star-forming galaxies, …


Clear: Spatially Resolved Emission Lines And Active Galactic Nuclei At 0.6 < Z < 1.3, Bren E. Backhaus, Joanna S. Bridge, Jonathan R. Trump, Nikko J. Cleri, Casey Papovich, Raymond C. Simons, Ivelina Momcheva, Benne Holwerda, Zhiyuan Ji, Intae Jung, Jasleen Matharu Jan 2023

Clear: Spatially Resolved Emission Lines And Active Galactic Nuclei At 0.6 < Z < 1.3, Bren E. Backhaus, Joanna S. Bridge, Jonathan R. Trump, Nikko J. Cleri, Casey Papovich, Raymond C. Simons, Ivelina Momcheva, Benne Holwerda, Zhiyuan Ji, Intae Jung, Jasleen Matharu

Faculty Scholarship

We investigate spatially resolved emission-line ratios in a sample of 219 galaxies (0.6 < z < 1.3) detected using the G102 grism on the Hubble Space Telescope Wide Field Camera 3 taken as part of the CANDELS Lyα Emission at Reionization survey to measure ionization profiles and search for low-luminosity active galactic nuclei (AGN). We analyze [O III] and Hβ emission-line maps, enabling us to spatially resolve the [O III]/Hβ emission-line ratio across the galaxies in the sample. We compare the [O III]/Hβ ratio in galaxy centers and outer annular regions to measure ionization differences and investigate the potential of sources with nuclear ionization to host AGN. We investigate some of the individual galaxies that are candidates to host strong nuclear ionization and find that they often have low stellar mass and are undetected in X-rays, as expected for low-luminosity AGN in low-mass galaxies. We do not find evidence for a significant population of off-nuclear AGN or other clumps of off-nuclear ionization. We model the observed distribution of [O III]/Hβ spatial profiles and find that most galaxies are consistent with a small or zero difference between their nuclear and off-nuclear line ratios, but 6%–16% of galaxies in the sample are likely to host nuclear [O III]/Hβ that is ∼0.5 dex higher than in their outer regions. This study is limited by large uncertainties in most of the measured [O III]/Hβ spatial profiles; therefore, deeper data, e.g., from deeper HST/ WFC3 programs or from JWST/NIRISS, are needed to more reliably measure the spatially resolved emission-line conditions of individual high-redshift galaxies.


The Radial Quenching Progression Of Nearby Galaxies, Chenyu Zhao Jan 2023

The Radial Quenching Progression Of Nearby Galaxies, Chenyu Zhao

Theses and Dissertations--Physics and Astronomy

In this dissertation, we explore the spatial distribution of quiescent regions within galaxies using data from the Sloan Digital Sky Survey IV Mapping Nearby Galaxies at Apache Point Observatory (SDSS-IV MaNGA). Our analysis focuses on a radial range spanning from 0.3 R e to 1.2 R e and involves the development of innovative data selection and processing methods. Through this investigation, we identify two prominent types of transition galaxies: central-star-forming galaxies (C-SF galaxies) and central-quiescent galaxies (C-Q galaxies). Notably, we observe a correlation between galaxy mass and the predominant type of transition, with more massive galaxies tending to be C-Q …


How Do Galaxies Form Their Stars Over Cosmic Time?, Jed H. Mckinney Oct 2022

How Do Galaxies Form Their Stars Over Cosmic Time?, Jed H. Mckinney

Doctoral Dissertations

Galaxies in the past were forming more stars than those today, but the driving force behind this increase in activity remains uncertain. In this thesis I explore the origin of high star-formation rates today and in the past by studying the properties of gas and dust in the cold interstellar medium (ISM) of dusty galaxies over cosmic time. Critically, we do not yet understand how these galaxies could form so many stars. This work began with my discovery of unusual infrared (IR) emission line ratios in the class of dusty galaxies where most of the Universe’s stars were formed. To …


The Cosmic History Of X-Ray Binary Evolution, Woodrow Gilbertson Aug 2022

The Cosmic History Of X-Ray Binary Evolution, Woodrow Gilbertson

Graduate Theses and Dissertations

The Chandra Deep Fields provide an extraordinary window into the high-energy history of the cosmos. Observations of non-active galaxies within the deep fields can be leveraged to extract information about the formation and evolution of X-ray binaries (XRBs). Previous studies have suggested that the evolution of XRB luminosity can be expressed a function of physical parameters such as star formation rate, stellar mass, stellar age, and metallicity. The goal of this work is to develop and implement a complete physical parameterization for the luminosity of XRB populations, which can be utilized for a variety of further studies.

Chapter 1 provides …


Problems Of Formation And Evolution Of Bulges Of Spiral Galaxies, Farkhodjon Botirov, Salakhutdin Nuritdinov Mar 2022

Problems Of Formation And Evolution Of Bulges Of Spiral Galaxies, Farkhodjon Botirov, Salakhutdin Nuritdinov

Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences

In this work, we develop the theory of the origin of galactic bulges, and gravitational instability of the bending, as well as modes of perturbation based on the background of a nonlinear non-stationary model. As a result, here, we propose critical diagrams and determine increments of instabilities for such types of perturbations. In addition, we also consider relationships between the masses of the bulge and the central black hole, which is of great importance in studying the evolution of the bulges of spiral galaxies. Moreover, problems on the evolution of bulges in spiral galaxies, together with discussions of their main …


Updated Analysis Of An Unexpected Correlation Between Dark Matter And Galactic Ellipticity, D. M. Winters, Alexandre Deur, X. Zheng Jan 2022

Updated Analysis Of An Unexpected Correlation Between Dark Matter And Galactic Ellipticity, D. M. Winters, Alexandre Deur, X. Zheng

Physics Faculty Publications

We investigate a correlation between the dark matter content of elliptical galaxies and their ellipticity ϵ that was initially reported in 2014. We use new determinations of dark matter and ellipticities that are posterior to that time. Our data set consists of 237 elliptical galaxies passing a strict set of criteria that selects a homogeneous sample of typical elliptical galaxies. We find a relation between the mass-to-light ratio and ellipticity ϵ that is well fitted by M/L = (14.1 ± 5.4)ϵ, which agrees with the result reported in 2014. Our analysis includes 135 galaxies that were not in …


Deep Radio Observations And The Role Of The Cosmic Web In Galaxy Evolution, Nicholas M. Luber Jan 2022

Deep Radio Observations And The Role Of The Cosmic Web In Galaxy Evolution, Nicholas M. Luber

Graduate Theses, Dissertations, and Problem Reports

A current open question in the evolution of galaxies, is what are the physical mechanisms that cut off galaxies from their primordial gas reservoirs, resulting in the end of their star-formation capabilities? Recent observational programs have shown that the properties of galaxies show dependencies on their placement within the large-scale structure (LSS) of the universe. These observations have motivated recent developments in theoretical work that have shown how a galaxy's interaction with the LSS may impact its connection to primordial gas supply, and ability to continue to accrete gas, the fundamental ingredient in star-formation.

In order to investigate the role …


Finding Strong Gravitational Lenses In The Desi Decam Legacy Survey, Xiaosheng Huang, Christopher Storfer, V. Ravi, A. Pilon, M. Domingo, D. J. Schlegel, S. Bailey, A. Dey, R. R. Gupta, D. Herrera, S. Juneau, M. Landriau, D. Lang, A. Meisner, J. Moustakas, A. D. Myers, E. F. Schlafly, F. Valdes, B. A. Weaver, J. Yang, C. Yèche May 2020

Finding Strong Gravitational Lenses In The Desi Decam Legacy Survey, Xiaosheng Huang, Christopher Storfer, V. Ravi, A. Pilon, M. Domingo, D. J. Schlegel, S. Bailey, A. Dey, R. R. Gupta, D. Herrera, S. Juneau, M. Landriau, D. Lang, A. Meisner, J. Moustakas, A. D. Myers, E. F. Schlafly, F. Valdes, B. A. Weaver, J. Yang, C. Yèche

Physics and Astronomy

We perform a semi-automated search for strong gravitational lensing systems in the 9000 deg2 Dark Energy Camera Legacy Survey (DECaLS), part of the Dark Energy Spectroscopic Instrument Legacy Imaging Surveys. The combination of the depth and breadth of these surveys are unparalleled at this time, making them particularly suitable for discovering new strong gravitational lensing systems. We adopt the deep residual neural network architecture developed by Lanusse et al. for the purpose of finding strong lenses in photometric surveys. We compile a training sample that consists of known lensing systems in the Legacy Surveys and the Dark Energy Survey as …


Formation Pathways In Brightest Cluster Galaxies: Measuring The Distribution Of Ages, Metallicities, And Hydrodynamics Of Stellar Populations, Priscilla E. Holguin West May 2020

Formation Pathways In Brightest Cluster Galaxies: Measuring The Distribution Of Ages, Metallicities, And Hydrodynamics Of Stellar Populations, Priscilla E. Holguin West

Physics

Brightest Cluster Galaxies (BCGs) are the most massive galaxies in the local universe and have had the full age of the universe to build. This makes their formation and evolution history particularly interesting as they offer a glimpse at potential evolutionary pathways for younger systems. We present the radial profile of ages, metallicities, and preliminary classification of companions to 23 BCGs observed using the SparsePak instrument on WIYN by running the STARLIGHT stellar population synthesis models. This analysis of the BCGs’ stellar populations is done by separating each BCG into different regions, and preliminary results of the stellar populations for …


Discovering New Strong Gravitational Lenses In The Desi Legacy Imaging Surveys, Xiaosheng Huang, Christopher Storfer, A. Gu, V. Ravi, A. Pilon, W. Sheu, R. Venguswamy, S. Bankda, A. Dey, M. Landriau, D. Lang, A. Meisner, J. Moustakas, A. D. Myers, R. Sajith, E. F. Schlafly, D. J. Schlegel May 2020

Discovering New Strong Gravitational Lenses In The Desi Legacy Imaging Surveys, Xiaosheng Huang, Christopher Storfer, A. Gu, V. Ravi, A. Pilon, W. Sheu, R. Venguswamy, S. Bankda, A. Dey, M. Landriau, D. Lang, A. Meisner, J. Moustakas, A. D. Myers, R. Sajith, E. F. Schlafly, D. J. Schlegel

Physics and Astronomy

We have conducted a search for new strong gravitational lensing systems in the Dark Energy Spectroscopic Instrument Legacy Imaging Surveys’ Data Release 8. We use deep residual neural networks, building on previous work presented in Huang et al. (2020). These surveys together cover approximately one third of the sky visible from the northern hemisphere, reaching a z-band AB magnitude of ∼ 22.5. We compile a training sample that consists of known lensing systems as well as non-lenses in the Legacy Surveys and the Dark Energy Survey. After applying our trained neural networks to the survey data, we visually inspect and …


The Distribution Of Ultra-Diffuse And Ultra-Compact Galaxies In The Frontier Fields, Steven Janssens, Roberto Abraham, Jean Brodie, Duncan Forbes, Aaron Romanowsky Dec 2019

The Distribution Of Ultra-Diffuse And Ultra-Compact Galaxies In The Frontier Fields, Steven Janssens, Roberto Abraham, Jean Brodie, Duncan Forbes, Aaron Romanowsky

Faculty Publications

Large low-surface-brightness galaxies have recently been found to be abundant in nearby galaxy clusters. In this paper, we investigate these ultra-diffuse galaxies (UDGs) in the six Hubble Frontier Fields galaxy clusters: A2744, MACS J0416.1−2403, MACS J0717.5+3745, MACS J1149.5+2223, AS1063, and A370. These are the most massive (1–3 × 1015 M ⊙) and distant (0.308 < z < 0.545) systems in which this class of galaxy has yet been discovered. We estimate that the clusters host of the order of ~200–1400 UDGs inside the virial radius (R 200), consistent with the UDG abundance–halo-mass relation found in the local universe, and suggest that UDGs may be formed in clusters. Within each cluster, however, we find that UDGs are not evenly distributed. Instead their projected spatial distributions are lopsided, and they are deficient in the regions of highest mass density as traced by gravitational lensing. While the deficiency of UDGs in central regions is not surprising, the lopsidedness is puzzling. The UDGs, and their lopsided spatial distributions, may be associated with known substructures late in their infall into the clusters, meaning that we find evidence both for formation of UDGs in clusters and for UDGs falling into clusters. We also investigate the ultra-compact dwarfs (UCDs) residing in the clusters, and find that the spatial distributions of UDGs and UCDs appear anticorrelated. Around 15% of UDGs exhibit either compact nuclei or nearby point sources. Taken together, these observations provide additional evidence for a picture in which at least some UDGs are destroyed in dense cluster environments and leave behind a residue of UCDs.


Secondary Infall In The Seyfert's Sextet: A Plausible Way Out Of The Short Crossing Time Paradox, Omar López-Cruz, Héctor Javier Ibarra-Medel, Sebastián F. Sánchez, Mark Birkinshaw, Christopher Añorve, Jorge K. Barrera-Ballesteros, Jesús Falcon-Barroso, Wayne A. Barkhouse, Juan P. Torres-Papaqui Nov 2019

Secondary Infall In The Seyfert's Sextet: A Plausible Way Out Of The Short Crossing Time Paradox, Omar López-Cruz, Héctor Javier Ibarra-Medel, Sebastián F. Sánchez, Mark Birkinshaw, Christopher Añorve, Jorge K. Barrera-Ballesteros, Jesús Falcon-Barroso, Wayne A. Barkhouse, Juan P. Torres-Papaqui

Physics Faculty Publications

We used integral field spectroscopy from CALIFA DR3 and multiwavelength publicly available data to investigate the star formation histories of galaxies in the Seyfert's Sextet (SS; HCG 79). The galaxies H79a, H79b, H79c, and H79f have low star formation rates despite showing strong signs of interaction. By exploring their individual specific star formation histories, we identified three earlier episodes of strong star formation common to these four galaxies. We use the last two episodes as markers of the epochs when the galaxies were crossing. We suggest that after the first turnaround, initially gas-rich galaxies crossed for the first time, consuming …


Milky Way Morphology, Laurence A. Marschall Nov 2019

Milky Way Morphology, Laurence A. Marschall

Physics and Astronomy Faculty Publications

From our limited perspective—living on a planet that orbits one of several hundred billion stars inside the Milky Way—the detailed structure of our home galaxy is difficult to determine. It has long been recognized by astronomers as a typical spiral galaxy, one of countless flattened pinwheels of stars seen throughout the universe. By mapping the distances to more than 2,400 stars, scientists have now created, with unprecedented precision, a three-dimensional map that shows the Milky Way has a twisted shape. [excerpt]


The Neutral Hydrogen Kinematics Of The Dwarf Galaxy Merger Ngc 3239, Robert N. Ford May 2019

The Neutral Hydrogen Kinematics Of The Dwarf Galaxy Merger Ngc 3239, Robert N. Ford

Macalester Journal of Physics and Astronomy

We present H I spectral line images of the nearby dwarf galaxy NGC 3239. The galaxy’s curious morphology suggests that it is a post-merger system. We propose that NGC 3239 is a merger because it has multiple tidal tails, an enhanced velocity dispersion throughout the disk, and widespread star formation. We have produced kinematic moment maps corresponding to the H I column density, radial velocity, and velocity dispersion. Further, position velocity (P-V) slices of the galaxy were taken and three-color images were made using the SDSS G, R, and I, filters for comparison with the moment maps. These slices illustrate …


Askap Commissioning Observations Of The Gama 23 Field, Denis A. Leahy, A. M. Hopkins, R. P. Norris, J. Marvil, J. D. Collier, E. N. Taylor, J. R. Allison, C. Anderson, M. Bell, M. Bilicki, J. Bland-Hawthorn, S. Brough, M. J.I. Brown, S. Driver, G. Gurkan, L. Harvey-Smith, I. Heywood, Benne W. Holwerda, J. Liske, A. R. Lopez-Sanchez, D. Mcconnell, A. Moffett, M. S. Owers, K. A. Pimbblet, W. Raja, N. Seymour, M. A. Voronkov, L. Wang Jan 2019

Askap Commissioning Observations Of The Gama 23 Field, Denis A. Leahy, A. M. Hopkins, R. P. Norris, J. Marvil, J. D. Collier, E. N. Taylor, J. R. Allison, C. Anderson, M. Bell, M. Bilicki, J. Bland-Hawthorn, S. Brough, M. J.I. Brown, S. Driver, G. Gurkan, L. Harvey-Smith, I. Heywood, Benne W. Holwerda, J. Liske, A. R. Lopez-Sanchez, D. Mcconnell, A. Moffett, M. S. Owers, K. A. Pimbblet, W. Raja, N. Seymour, M. A. Voronkov, L. Wang

Faculty Scholarship

We have observed the G23 field of the Galaxy AnMass Assembly (GAMA) survey using the Australian Square Kilometre Array Pathfinder (ASKAP) in its commissioning phase to validate the performance of the telescope and to characterise the detected galaxy populations. This observation covers ∼48 deg2 with synthesised beam of 32.7 arcsec by 17.8 arcsec at 936MHz, and ∼39 deg2 with synthesised beam of 15.8 arcsec by 12.0 arcsec at 1320MHz. At both frequencies, the root-mean-square (r.m.s.) noise is ∼0.1 mJy/beam. We combine these radio observations with the GAMA galaxy data, which includes spectroscopy of galaxies that are i-band selected with a …


Exploring The Diffuse Neutral Hydrogen In And Around Nearby Galaxies, Amy Sardone Jan 2019

Exploring The Diffuse Neutral Hydrogen In And Around Nearby Galaxies, Amy Sardone

Graduate Theses, Dissertations, and Problem Reports

We explore the environment of 36 nearby galaxies in neutral hydrogen (H I) as part of the MeerKAT H I Observations of Nearby Galactic Objects; Observing Southern Emitters (MHONGOOSE) survey with the Robert C. Byrd Green Bank Telescope (GBT), and the Imaging Galaxies Intergalactic and Nearby En- vironment (IMAGINE) survey with the Parkes Radio Telescope. We obtained deep observations of each of these galaxies, reaching column density detection sensitivities as low as NHI ∼ 1e17 cm^−2, which allowed us to quantify the amount of diffuse H I in both samples of galaxies. This allows us to search for evidence of …


Detecting Radio Agn Signatures In Red Geysers, Namrata Roy, Kevin Bundy, Wiphu Rujopakarn, Michele Cappellari, Francesco Belfiore, Renbin Yan, Tim Heckman, Matthew Bershady, Jenny Greene, Kyle Westfall, Niv Drory, Kate Rubin, David Law, Kai Zhang, Joseph Gelfand, Dmitry Bizyaev, David Wake, Karen Masters, Daniel Thomas, Cheng Li, Rogemar A. Riffel Dec 2018

Detecting Radio Agn Signatures In Red Geysers, Namrata Roy, Kevin Bundy, Wiphu Rujopakarn, Michele Cappellari, Francesco Belfiore, Renbin Yan, Tim Heckman, Matthew Bershady, Jenny Greene, Kyle Westfall, Niv Drory, Kate Rubin, David Law, Kai Zhang, Joseph Gelfand, Dmitry Bizyaev, David Wake, Karen Masters, Daniel Thomas, Cheng Li, Rogemar A. Riffel

Physics and Astronomy Faculty Publications

A new class of quiescent galaxies harboring possible AGN-driven winds has been discovered using spatially resolved optical spectroscopy from the ongoing SDSS-IV MaNGA survey. These galaxies, termed "red geysers," constitute 5%–10% of the local quiescent population and are characterized by narrow bisymmetric patterns in ionized gas emission features. Cheung et al. argued that these galaxies host large-scale AGN-driven winds that may play a role in suppressing star formation at late times. In this work, we test the hypothesis that AGN activity is ultimately responsible for the red geyser phenomenon. We compare the nuclear radio activity of the red geysers to …


The Discovery Of A Gravitationally Lensed Supernova Ia At Redshift 2.22, David Rubin, Brian Hayden, Xiaosheng Huang, Greg Aldering, R Amanullah, K Barbary, K Boone, M Brodwin, S E. Deustua, S Dixon, P Eisenhardt, A S. Fruchter, A H. Gonzalez, A Goobar, R R. Gupta, I Hook, M. James Jee, A G. Kim, M Kowalski, C Lidman, E V. Linder, K Luther, J Nordin, R Pain, Saul Perlmutter, Z Raha, M Rigault, P Ruiz-Lapuente, C Saunders, C Sofiatti, A L. Spadafora, S A. Stanford, D Stern, N Suzuki, S C. Williams Oct 2018

The Discovery Of A Gravitationally Lensed Supernova Ia At Redshift 2.22, David Rubin, Brian Hayden, Xiaosheng Huang, Greg Aldering, R Amanullah, K Barbary, K Boone, M Brodwin, S E. Deustua, S Dixon, P Eisenhardt, A S. Fruchter, A H. Gonzalez, A Goobar, R R. Gupta, I Hook, M. James Jee, A G. Kim, M Kowalski, C Lidman, E V. Linder, K Luther, J Nordin, R Pain, Saul Perlmutter, Z Raha, M Rigault, P Ruiz-Lapuente, C Saunders, C Sofiatti, A L. Spadafora, S A. Stanford, D Stern, N Suzuki, S C. Williams

Physics and Astronomy

We present the discovery and measurements of a gravitationally lensed supernova (SN) behind the galaxy cluster MOO J1014+0038. Based on multi-band Hubble Space Telescope and Very Large Telescope (VLT) photometry of the supernova, and VLT spectroscopy of the host galaxy, we find a 97.5% probability that this SN is a SN Ia, and a 2.5% chance of a CC SN. Our typing algorithm combines the shape and color of the light curve with the expected rates of each SN type in the host galaxy. With a redshift of 2.2216, this is the highest redshift SN Ia discovered with a spectroscopic …


An Acoustical Analogue Of A Galactic-Scale Gravitational-Wave Detector, Michael T. Lam, Joseph D. Romano, Joey Key, M. E. Normandin, ‪Jeffrey S. Hazboun Oct 2018

An Acoustical Analogue Of A Galactic-Scale Gravitational-Wave Detector, Michael T. Lam, Joseph D. Romano, Joey Key, M. E. Normandin, ‪Jeffrey S. Hazboun

Physics and Astronomy Faculty Publications and Presentations

By precisely monitoring the “ticks” of Nature's most precise clocks (millisecond pulsars), scientists are trying to detect the “ripples in spacetime” (gravitational waves) produced by the inspirals of supermassive black holes in the centers of distant merging galaxies. Here, we describe a relatively simple demonstration that uses two metronomes and a microphone to illustrate several techniques used by pulsar astronomers to search for and detect gravitational waves. An adapted version of this demonstration could be used as an instructional laboratory investigation at the undergraduate level.


Challenges And Techniques For Simulating Line Emission, Karen P. Olsen, Andrea Pallottini, Aida Wofford, Marios Chatzikos, Mitchell Revalski, Francisco Guzmán, Gergö Popping, Enrique Vázquez-Semadeni, Georgios E. Magdis, Mark L. A. Richardson, Michaela Hirschmann, William J. Gray Sep 2018

Challenges And Techniques For Simulating Line Emission, Karen P. Olsen, Andrea Pallottini, Aida Wofford, Marios Chatzikos, Mitchell Revalski, Francisco Guzmán, Gergö Popping, Enrique Vázquez-Semadeni, Georgios E. Magdis, Mark L. A. Richardson, Michaela Hirschmann, William J. Gray

Physics and Astronomy Faculty Publications

Modeling emission lines from the millimeter to the UV and producing synthetic spectra is crucial for a good understanding of observations, yet it is an art filled with hazards. This is the proceedings of “Walking the Line”, a 3-day conference held in 2018 that brought together scientists working on different aspects of emission line simulations, in order to share knowledge and discuss the methodology. Emission lines across the spectrum from the millimeter to the UV were discussed, with most of the focus on the interstellar medium, but also some topics on the circumgalactic medium. The most important quality of a …


The Clustering Of Young Stellar Clusters In Nearby Galaxies, Kathryn Grasha Jul 2018

The Clustering Of Young Stellar Clusters In Nearby Galaxies, Kathryn Grasha

Doctoral Dissertations

Star clusters form the basic building blocks of galaxies. They span a wide range of ages, from a few million years to billions of years, making them exceptional tracers of the star formation histories of their host galaxies. Star formation is the process by which galaxies build up their stellar populations and their visible mass and occurs in a continuous, hierarchical "social" fashion across a large dynamical range, from individual stars up to kiloparsec-scale ensembles of stellar aggregates. It is the formation, evolution, and eventual destruction of these large hierarchical star-forming complexes that provide an essential role in understanding the …


How Many Quasars Have Extremely High Velocity Outflows?, Carla P. Quintero, Sean S. Haas, Paola Rodriguez Hidalgo Jun 2018

How Many Quasars Have Extremely High Velocity Outflows?, Carla P. Quintero, Sean S. Haas, Paola Rodriguez Hidalgo

IdeaFest: Interdisciplinary Journal of Creative Works and Research from Cal Poly Humboldt

No abstract provided.