Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 250

Full-Text Articles in Physical Sciences and Mathematics

Radio Insights Into Gamma-Ray Mysteries, Seth M. Bruzewski Dec 2023

Radio Insights Into Gamma-Ray Mysteries, Seth M. Bruzewski

Physics & Astronomy ETDs

In the time since its launch, the \textit{Fermi Gamma-Ray Space Telescope} has provided new and unparalleled views of the $\gamma$-ray sky, dramatically increasing our understanding of sources of high-energy radiation. During that same time, however, its ``unassociated'' sources have provided a consistent mystery: approximately one third of the modern gamma-ray sky remains completely unaccounted for in other electromagnetic regimes. While some of the fainter sources simply pose challenges in achieving the necessary signal-to-noise ratio, others are well constrained and have resisted traditional investigations for years, and in some cases, for over a decade. Radio astronomy has traditionally been the best …


Modeling Lithographic Quantum Dots And Donors For Quantum Computation And Simulation, Mitchell Ian Brickson Dec 2023

Modeling Lithographic Quantum Dots And Donors For Quantum Computation And Simulation, Mitchell Ian Brickson

Physics & Astronomy ETDs

Our first focus is on few-hole quantum dots in germanium. We use discontinous Galerkin methods to discretize and solve the equations of a highly detailed k·p model that describes these systems, enabling a better understanding of experimental magnetospectroscopy results. We confirm the expected anisotropy of single-hole g-factors and describe mechanisms by which different orbital states have different g-factors. Building on this, we show that the g-factors in Ge holes are suciently sensitive to details of the device electrostatics that magnetospectroscopy data can be used to make a prediction of the underlying confinement potential. The second focus is on designing quantum …


Godel, Escherian Staircase And Possibility Of Quantum Wormhole With Liquid Crystalline Phase Of Iced-Water - Part Ii: Experiment Description, Victor Christianto, T. Daniel Chandra, Florentin Smarandache Dec 2023

Godel, Escherian Staircase And Possibility Of Quantum Wormhole With Liquid Crystalline Phase Of Iced-Water - Part Ii: Experiment Description, Victor Christianto, T. Daniel Chandra, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

The present article was partly inspired by G. Pollack’s book, and also Dadoloff, Saxena & Jensen (2010). As a senior physicist colleague and our friend, Robert N. Boyd, wrote in a journal (JCFA, Vol. 1, No. 2, 2022), for example, things and Beings can travel between Universes, intentionally or unintentionally [4]. In this short remark, we revisit and offer short remark to Neil Boyd’s ideas and trying to connect them with geometry of musical chords as presented by D. Tymoczko and others, then to Escherian staircase and then to Jacob’s ladder which seems to pointto possibility to interpret Jacob’s vision …


Godel, Escherian Staircase And Possibility Of Quantum Wormhole With Liquid Crystalline Phase Of Iced-Water - Part I: Theoretical Underpinning, Victor Christianto, T. Daniel Chandra, Florentin Smarandache Dec 2023

Godel, Escherian Staircase And Possibility Of Quantum Wormhole With Liquid Crystalline Phase Of Iced-Water - Part I: Theoretical Underpinning, Victor Christianto, T. Daniel Chandra, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

As a senior physicist colleague and our friend, Robert N. Boyd, wrote in a journal (JCFA, Vol. 1,. 2, 2022), Our universe is but one page in a large book [4]. For example, things and Beings can travel between Universes, intentionally or unintentionally. In this short remark, we revisit and offer short remark to Neil’s ideas and trying to connect them with geometrization of musical chords as presented by D. Tymoczko and others, then to Escher staircase and then to Jacob’s ladder which seems to point to possibility to interpret Jacob’s vision as described in the ancient book of Genesis …


Understanding The Nature Of Pulsars And Characterizing Propagation Effects Using Pulsar Timing, Pratik Kumar Oct 2023

Understanding The Nature Of Pulsars And Characterizing Propagation Effects Using Pulsar Timing, Pratik Kumar

Physics & Astronomy ETDs

Pulsars are highly magnetized stellar remnants, among the densest known objects, and primarily produce radio emission in the form of lighthouse beams sweeping across the line of sight as a regular train of pulses. Apart from providing tests for matter in high-density regimes, general relativity, and plasma emission; perhaps the most notable characteristic is their applicability as precise astronomical clocks to measure various effects. Pulsar Timing Arrays (PTAs) are galactic scale detectors analogous to ground-based detectors of Gravitational Waves (GWs) like LIGO, with the aim of detecting low-frequency nano-Hz GWs from coalescing binary supermassive black holes. PTAs consist of a …


Near- And Far- Field Optical Response Of Ensembles Of Nanostructures, Lauren Zundel Aug 2023

Near- And Far- Field Optical Response Of Ensembles Of Nanostructures, Lauren Zundel

Physics & Astronomy ETDs

The ability of metallic nanostructures to support collective oscillations of their conduction electrons, known as surface plasmons, makes them attractive candidates for a wide range of applications in areas as diverse as cancer therapy, biosensing, and solar energy harvesting. These applications are especially promising for periodic arrays of nanostructures, which can support collective modes known as lattice resonances, and for nanostructures with extreme aspect ratios that give rise to enhanced light-matter interaction. In this Thesis, we employ a coupled dipole model to theoretically explore the lattice resonances supported by complex arrays of nanoparticles containing multiple nanoparticles per unit cell. We …


Application Of Quantum Mechanical Techniques To Optical Waveguide Structures, Stuart Ward Aug 2023

Application Of Quantum Mechanical Techniques To Optical Waveguide Structures, Stuart Ward

Physics & Astronomy ETDs

The focus of this dissertation is on the application of supersymmetric quantum mechanics to the problem of microbending in optical waveguides and on the analysis of soliton decay due solely to quantum mechanical effects.

The techniques of supersymmetric quantum mechanics are applied to the equation of motion describing light propagation in an optical waveguide which is undergoing microbending. Based on these supersymmetric techniques, given a particular refractive index profile, one may derive a new refractive index profile which results in less loss due to the microbending -- the particular example of the monomial index profile is analyzed in detail. An …


The Quantum Computational Utility Of Symmetry-Protected Topological Order: From Near-Term Advantages To Universal Measurement-Based Quantum Computing, Austin Kevin Daniel May 2023

The Quantum Computational Utility Of Symmetry-Protected Topological Order: From Near-Term Advantages To Universal Measurement-Based Quantum Computing, Austin Kevin Daniel

Physics & Astronomy ETDs

Quantum computers offer new avenues to approach difficult problems by taking advantage of the strange and often nonintuitive phenomena present in quantum physics. Though many quantum algorithms are believed or known to outperform the best known classical algorithms, the fundamental mechanism granting them their power remains elusive. In measurement-based quantum computation (MBQC), two key resources have been show to enable universal and provably nonclassical quantum computations, respectively. These are symmetry-protected topological order (SPTO), a notion describing a class of quantum magnets with hidden long-range correlations in their entanglement structure, and quantum contextuality, the fact that a quantum measurement outcome inherently …


Distance Estimates To Evolved Stars Using Infrared Emission And Verification And Validation Of The Plasma Code Empire, Brandon M. Medina Aug 2022

Distance Estimates To Evolved Stars Using Infrared Emission And Verification And Validation Of The Plasma Code Empire, Brandon M. Medina

Physics & Astronomy ETDs

Gaining insight into the structure and dynamics of the Milky Way is important for understanding the universe on a large scale. Evolved stars on the Asymptotic Giant Branch are useful for studying the Milky Way because their emission is peaked in the infrared, where interstellar extinction effects are not as dominant. To further understand the physical properties of these objects like luminosity and investigate the Galaxy's structure, we need distance estimates. Obtaining distance estimates for these evolved stars via trigonometric parallax measurements is time-consuming, so infrared surveys studying Asymptotic Giant Branch stars can benefit from other distance estimate methods. In …


Resource Estimation For Quantum Simulation Algorithms, Changhao Yi Jul 2022

Resource Estimation For Quantum Simulation Algorithms, Changhao Yi

Physics & Astronomy ETDs

A major application of quantum computers is simulating other quantum systems that are intractable to simulate classically. The broad family of algorithms for this problem go by the name of quantum simulation. Product formulas provide resource efficient and practical methods to simulate Hamiltonian dynamics. In this thesis, we study the resource estimation of quantum simulation by product formula from two aspects. First, we provide a detailed analysis of the algorithm itself. Using the effective Hamiltonian perspective, we successfully reduce the circuit complexity of quantum phase estimation and digital adiabatic simulation. Second, we analyze the performance of dynamical decoupling, a widely-used …


Nano-Fabricated Atomic Waveguides For Inertial Measurements, Adrian S. Orozco Apr 2022

Nano-Fabricated Atomic Waveguides For Inertial Measurements, Adrian S. Orozco

Physics & Astronomy ETDs

Atom-based inertial measurement systems can measure acceleration and rotation very precisely in the laboratory. The central element of these systems is atom interferometry where the phase shifts are sensitive to inertial forces experienced by the atom. This phenomenon has been used to make atom-based gravimeters, gradiometers, and gyroscopes. Recent effort has been made to make these systems more compact which require small size, light weight, and low power (SWaP). Nano-fabricated waveguides, such as photonic waveguides or optical nanofibers, offer a promising avenue to meet these goals. They have dimensions comparable to the guided light’s wavelength producing a mode that not …


Reliability Of Quantum Simulation On Nisq-Era Devices, Karthik R. Chinni Apr 2022

Reliability Of Quantum Simulation On Nisq-Era Devices, Karthik R. Chinni

Physics & Astronomy ETDs

We study the reliability of quantum simulation on Noisy intermediate-scale quantum (NISQ)-era devices in the presence of errors and imperfections, with a focus on exploring the relationship between the properties of the system being simulated and the errors in the output of the simulator. We first consider simulation of the Lipkin-Meshkov-Glick (LMG) model, which becomes chaotic in the presence of a background time-dependent perturbation. Here we show that the quantities that depend on the global structure of the phase space are robust, while other quantities that depend on the local trajectories are fragile and cannot be reliably extracted from the …


Magnetic Microscopy And Search For Exotic Interaction Detection With Color Centers In Diamond, Nathaniel Ristoff Jan 2022

Magnetic Microscopy And Search For Exotic Interaction Detection With Color Centers In Diamond, Nathaniel Ristoff

Physics & Astronomy ETDs

Nitrogen vacancy (NV) centers have been used extensively for the measurement of magnetic fields in applications of geology, biology, medicine, and fundamental physics. In regard to fundamental physics, NV centers offer a unique opportunity to test potential velocity dependant spin-spin interactions as well as velocity-spin interactions at the micron scale. In regards to magnetic materials, NV centers offer a platform to investigate magnetic properties of nanoparticles in an individual, but highly parallelized measurement. In this work, an experiment is proposed to measure a potential fundamental interaction between spins, mediated by an integer spin boson. These velocity dependent interactions will couple …


The Morphology And Evolution Of Transverse Aeolian Ridges On Mars, Timothy Paul Nagle-Mcnaughton Oct 2021

The Morphology And Evolution Of Transverse Aeolian Ridges On Mars, Timothy Paul Nagle-Mcnaughton

Earth and Planetary Sciences ETDs

Transverse aeolian ridges (TARs) are enigmatic and largely relict bedforms on the surface of Mars. TARs are sparsely distributed but common on Mars, but their history, preservation, and past role in the sediment cycle is not well understood. First described in 2003, and detailed extensively in 2008, our study of TARs has been narrowly focused in the last decade, with more and more research noting their presence, but little investigation of the features themselves. Recent work has mostly focused on identifying Terran analogues for TARs, but TARs remain largely a unique Martian feature. In this manuscript, I clarify and refine …


Nanoscale Assembly Of Dectin-1 And Its Glucan Ligand In Immunocyte Membranes And Pathogen Cell Walls, Akram Etemadi Amin Jul 2021

Nanoscale Assembly Of Dectin-1 And Its Glucan Ligand In Immunocyte Membranes And Pathogen Cell Walls, Akram Etemadi Amin

Physics & Astronomy ETDs

Candida spp. pathogens continue to be a significant health care burden with high mortality and exceeding enormous healthcare costs. Candida infection range varies from dermatological infection to more severe bloodstream infection in debilitated patients. Due to this, research dedicated to understanding biophysical interactions between Candida species and the host’s immune cells is essential. The C-type lectin’s (CtLs) are known to bind to Candida cell walls and play a crucial role in downstream immune signaling. It is known that β-glucans, the highly immunogenic polysaccharide in Candida’s cell wall, are mostly masked underneath a layer of mannosylated proteins. The amount of …


Searching For The Global 21 Cm Cosmic Dawn Absorption Signal With The Long Wavelength Array, Christopher Dilullo Jun 2021

Searching For The Global 21 Cm Cosmic Dawn Absorption Signal With The Long Wavelength Array, Christopher Dilullo

Physics & Astronomy ETDs

The redshifted 21 cm signal from neutral hydrogen offers one of the best observational probes of Cosmic Dawn and the Epoch of Reionization. This dissertation presents an effort to detect the redshifted 21 cm signal using the Long Wavelength Array station located on the Sevilleta National Wildlife Refuge in New Mexico, USA (LWA-SV). The major goal is to validate the potential detection reported by the EDGES collaboration. This measurement requires a dynamic range on the order of 105 in order to disentangle the cosmological signal from the Galactic foregrounds. The beamforming capability of LWA-SV is novel to this search. …


Aztlán Del Sol, Marcus Zúñiga May 2021

Aztlán Del Sol, Marcus Zúñiga

Chamisa: A Journal of Literary, Performance, and Visual Arts of the Greater Southwest

An artistic writing developed from the themes and concepts of an of art installation made by a visual artist of Mexican-American descent from New Mexico. The work references the relationship of Aztec mythology to the American Southwest, art theoretical discourse in object oriented ontology and aesthetics, and key ideas in astronomy. Additionally interwoven is an expanded sense for interpreting ancestry and history under the constructs of multicultural conceptions of time, specifically cultures with notable spiritual rituals of Sun worship and observation.


A Search For New Physics In B(S) To Mu+Mu- Decays Using Multivariate Data Analysis, And Development Of Particle Detection Technology With Silicon Pixel Detectors, Aidan Grummer Apr 2021

A Search For New Physics In B(S) To Mu+Mu- Decays Using Multivariate Data Analysis, And Development Of Particle Detection Technology With Silicon Pixel Detectors, Aidan Grummer

Physics & Astronomy ETDs

A suite of linked research projects is undertaken, combining a search for phenomena beyond the Standard Model of particle physics, development of new instruments for greater precision in detecting fundamental particles, and tracking and understanding the effect upon the detectors of the radiation that is an indelible element of their operating environment. Data recorded by the ATLAS Detector at CERN are employed in a search for evidence of undiscovered particles contributing to the rate of decays of B0 and B0s mesons to dimuon final states. New applications of machine learning techniques are implemented to separate this signal …


Probing The Galactic Agb Population Through Infrared And Sio Maser Emission, Megan O. Lewis Apr 2021

Probing The Galactic Agb Population Through Infrared And Sio Maser Emission, Megan O. Lewis

Physics & Astronomy ETDs

Stars on the Asymptotic Giant Branch (AGB) are of low to intermediate mass and have reached the end stages of stellar evolution. The mass-loss that stars undergo at this phase enshrouds the central star in a circumstellar envelope (CSE) that redistributes most of the stellar light into the infrared (IR) regime of the spectrum. In the CSEs of oxygen-rich AGB stars molecules including SiO form, and under certain conditions maser emission from SiO can make AGB stars bright beacons at radio frequencies (e.g., 43 and 86 GHz). SiO masers are ideal observational probes of AGB sources, providing data on their …


Monitoring The Low Frequency Radio Transient Sky With The Long Wavelength Array, Savin Shynu Varghese Dec 2020

Monitoring The Low Frequency Radio Transient Sky With The Long Wavelength Array, Savin Shynu Varghese

Physics & Astronomy ETDs

Transient searches in radio astronomy have discovered some of the most extreme astrophysical phenomena in our universe. This has enabled us to study the physics of these explosive and dynamic sources. Most of the transient searches over the past 70 years have been at frequencies higher than 100 MHz leaving the transient sky below 100 MHz unexplored. The Long Wavelength Array (LWA) telescope offers an excellent opportunity to study the transient sky below 100 MHz with its wide field of view, high sensitivity and fast imaging at shorter timescales. This dissertation presents the transient searches carried out using the all-sky …


Monte Carlo Simulations Of Awkward Actions, David John Amdahl Dec 2020

Monte Carlo Simulations Of Awkward Actions, David John Amdahl

Physics & Astronomy ETDs

Time derivatives of scalar fields occur quadratically in textbook actions. A simple Legendre transformation turns the Lagrangian into a Hamiltonian that is quadratic in the momentum. The partition function over the momentum is Gaussian. Mean values of operators are basically euclidian path integrals of their classical counterparts with positive weight functions. Monte Carlo simulations can estimate such mean values. This familiar framework falls apart when the time derivatives do not occur quadratically. The Legendre transformation becomes difficult or so intractable that the Hamiltonian can’t be determined. Even if the Hamiltonian is found, it usually is so complicated that the partition …


Exploring Hidden Structure Of The Nearby Universe And The Limits And Capabilities Of Two Neutral Hydrogen Surveys, Monica Sanchez Barrantes Nov 2020

Exploring Hidden Structure Of The Nearby Universe And The Limits And Capabilities Of Two Neutral Hydrogen Surveys, Monica Sanchez Barrantes

Physics & Astronomy ETDs

We can use the 21 cm neutral hydrogen (HI) emission line to detect galaxies in optically obscured regions, but it is also a faint line that is difficult to detect at higher redshifts. This work presents two HI surveys. The ALFAZOA Survey maps new and predicted large-scale structure across the Galactic plane, and finds a total of 217 completely new galaxies across both of the survey phases. The completeness limits for ALFAZOA Shallow and Deep are presented. Follow-up observations of confused galaxies in ALFAZOA using the VLA determine that confusion in this survey will not cause significant deviations for the …


Understanding Solar Wind Formation By Identifying The Origins Of In Situ Observations, Samantha Wallace Oct 2020

Understanding Solar Wind Formation By Identifying The Origins Of In Situ Observations, Samantha Wallace

Physics & Astronomy ETDs

Over the past century, significant progress has made on the subjects of two fundamental unresolved questions in Heliophysics, namely 1) how is the solar corona heated to multi-million-degree temperatures, and 2) how is the solar wind formed, from its origin, to its release and acceleration. While the two are in many ways intertwined, this dissertation focuses on the latter. Our current understanding of solar wind formation has developed largely through relating the general origins of the observed solar wind on global spatial scales to the corresponding observed speed at 1 au. However, we are now at a point where long-standing …


Towards Realism Interpretation Of Wave Mechanics Based On Maxwell Equations In Quaternion Space And Some Implications, Including Smarandache’S Hypothesis, Florentin Smarandache, Victor Christianto, Yunita Umniyati Jun 2020

Towards Realism Interpretation Of Wave Mechanics Based On Maxwell Equations In Quaternion Space And Some Implications, Including Smarandache’S Hypothesis, Florentin Smarandache, Victor Christianto, Yunita Umniyati

Branch Mathematics and Statistics Faculty and Staff Publications

No abstract provided.


Cherenkov Gamma Ray Detectors On High-Energy-Density Systems, Kevin Daniel Meaney May 2020

Cherenkov Gamma Ray Detectors On High-Energy-Density Systems, Kevin Daniel Meaney

Physics & Astronomy ETDs

High energy density (HED) systems are some of the most extreme environments ever created by mankind. Systems with pressures greater than 1 MBar can only be created by a handful of devices on earth, often utilizing high intensity lasers or pulsed power machines. HED systems offer a view into an extreme form of matter only seen in stellar cores, supernovas and other powerful astrophysical systems. Creating HED systems on Earth offer the possibility, if the physics and technology can be matured, to one day create a fusion power plant. If a system is hot and dense enough, the fusion reaction …


Towards Gross-Pitaevskiian Description Of Solar System & Galaxies, Florentin Smarandache, Victor Christianto, Yunita Umniyati May 2020

Towards Gross-Pitaevskiian Description Of Solar System & Galaxies, Florentin Smarandache, Victor Christianto, Yunita Umniyati

Branch Mathematics and Statistics Faculty and Staff Publications

In this paper, we argue that Gross-Pitaevskii model can be a more complete description of both solar system and spiral galaxies, especially taking into account the nature of chirality and vortices in galaxies. We also hope to bring out some correspondence among existing models, e.g., the topological vortex approach, Burgers equation in the light of KAM theory, and the Cantorian Navier-Stokes approach. We hope further investigation can be done around this line of approach.


Collective Neutrino Flavor Oscillations In Multiple Dimensions And Scales, Joshua D. Martin Apr 2020

Collective Neutrino Flavor Oscillations In Multiple Dimensions And Scales, Joshua D. Martin

Physics & Astronomy ETDs

Hot and dense astrophysical environments such as the early universe, core collapse novae and binary neutron star mergers generate dense neutrino gases which can sub- sequently have an important effect on processes which occur in these environments. In this thesis we will present the results from several numerical simulations of these gases particularly in cases which are relevant to core collapse supernovae. These simulations employ fewer imposed spatial symmetries than those used in earlier works, and provide insight into behavior which may be expected to occur in three key regions of the explosion. We observe that when the neutrino gas …


Response To Pitkanen’S Solar System Model: Towards Gross-Pitaevskiian Description Of Solar System And Galaxies And More Evidence Of Chiral Superfluid Vortices, Victor Christianto, Florentin Smarandache, Yunita Umniyati Apr 2020

Response To Pitkanen’S Solar System Model: Towards Gross-Pitaevskiian Description Of Solar System And Galaxies And More Evidence Of Chiral Superfluid Vortices, Victor Christianto, Florentin Smarandache, Yunita Umniyati

Branch Mathematics and Statistics Faculty and Staff Publications

In a new paper in recent issue of this journal (PSTJ), Prof. M. Pitkanen describes a solar system model inspired by spiral galaxies. While we appreciate his new approach, we find it lacks substantial discussion on the nature of vortices and chirality in galaxy. Therefore we submit a viewpoint that Gross-Pitaevskii model can be a more complete description of both solar system and also spiral galaxies, especially taking into account the nature of chirality and vortices in galaxies. In this article, we also hope to bring out some correspondence among existing models, so we discuss shortly: the topological vortice approach, …


On The Complexity Of Boson Sampling Using Atoms In Optical Lattices, Gopikrishnan Muraleedharan Mar 2020

On The Complexity Of Boson Sampling Using Atoms In Optical Lattices, Gopikrishnan Muraleedharan

Physics & Astronomy ETDs

The extended Church-Turing thesis says that any computation that can be done by a physically realizable model of computers can be efficiently computed by the simplest model of classical computer, a Turing machine. Since the introduction of the concept of quantum computers, a central goal has been to find instances where the extended Church- Turing thesis fails. In the current noisy intermediate-scale quantum devices era, one looks for such instances that can be simulated on modest devices of small scale in the presence of noise. In this thesis, we work with one such problem, namely the Boson Sampling problem. We …


On Possibility Of Binary Companion Of The Sun: A Serendipity Finding And Comparison With Uvs Model Of Solar System, Victor Christianto, Florentin Smarandache Jan 2020

On Possibility Of Binary Companion Of The Sun: A Serendipity Finding And Comparison With Uvs Model Of Solar System, Victor Christianto, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

While we completely understood that a binary dwarf companion of the Sun has not been accepted by majority of astronomers, allow us to present some new arguments, along with our own serendipitous encounter with such a binary companion of the Sun. We hope that the present note will be found useful for further investigations, in relation to Planet Nine and such a dwarf star companion of the Sun (sometimes dubbed as Nemesis). Nonetheless, this article is not an exhaustive review of such dwarf companion star theories.