Open Access. Powered by Scholars. Published by Universities.®

Discipline
Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 481 - 510 of 806

Full-Text Articles in Other Biochemistry, Biophysics, and Structural Biology

Numerical Simulations Of In Vitro Nanoparticle Toxicity – The Case Of Poly(Amido Amine) Dendrimers., Marcus Maher, Pratap Naha, Sourav Prasanna Mukherjee, Hugh Byrne Dec 2014

Numerical Simulations Of In Vitro Nanoparticle Toxicity – The Case Of Poly(Amido Amine) Dendrimers., Marcus Maher, Pratap Naha, Sourav Prasanna Mukherjee, Hugh Byrne

Articles

A phenomenological rate equation model is constructed to numerically simulate nanoparticle uptake and subsequent cellular response. Polyamidoamine dendrimers (generations 4-6) are modelled and the temporal evolution of the intracellular cascade of; increased levels of reactive oxygen species, intracellular antioxidant species, caspase activation, mitochondrial membrane potential decay, tumour necrosis factor and interleukin generation is simulated, based on experimental observations.

The dose and generation dependence of several of these response factors are seen to well represent experimental observations at a range of time points. The model indicates that variations between responses of different cell-lines, including murine macrophages, human keratinocytes and colon cells, …


Overexpression Of Patatin-Related Phospholipase Aiiiβ Altered The Content And Composition Of Sphingolipids In Arabidopsis, Maoyin Li, Jennifer E. Markham, Xuemin Wang Oct 2014

Overexpression Of Patatin-Related Phospholipase Aiiiβ Altered The Content And Composition Of Sphingolipids In Arabidopsis, Maoyin Li, Jennifer E. Markham, Xuemin Wang

Department of Biochemistry: Faculty Publications

In plants, fatty acids are primarily synthesized in plastids and then transported to the endoplasmic reticulum (ER) for synthesis of most of the complex membrane lipids, including glycerolipids and sphingolipids. The first step of sphingolipid synthesis, which uses a fatty acid and a serine as substrates, is critical for sphingolipid homeostasis; its disruption leads to an altered plant growth. Phospholipase As have been implicated in the trafficking of fatty acids from plastids to the ER. Previously, we found that overexpression of a patatin-related phospholipase, pPLAIIIβ, resulted in a smaller plant size and altered anisotropic cell expansion. Here, we determined the …


The Non-Canonical Hydroxylase Structure Of Yfcm Reveals A Metal Ion-Coordination Motif Required For Ef-P Hydroxylation, Kan Kobayashi, Assaf Katz, Andrei Rajkovic, Ryohei Ishii, Owen E. Branson, Michael A. Freitas, Ryuichiro Ishitani, Michael Ibba, Osamu Nureki Oct 2014

The Non-Canonical Hydroxylase Structure Of Yfcm Reveals A Metal Ion-Coordination Motif Required For Ef-P Hydroxylation, Kan Kobayashi, Assaf Katz, Andrei Rajkovic, Ryohei Ishii, Owen E. Branson, Michael A. Freitas, Ryuichiro Ishitani, Michael Ibba, Osamu Nureki

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

EF-P is a bacterial tRNA-mimic protein, which accelerates the ribosome-catalyzed polymerization of poly-prolines. In Escherichia coli, EF-P is post-translationally modified on a conserved lysine residue. The post-translational modification is performed in a two-step reaction involving the addition of a β-lysine moiety and the subsequent hydroxylation, catalyzed by PoxA and YfcM, respectively. The β-lysine moiety was previously shown to enhance the rate of poly-proline synthesis, but the role of the hydroxylation is poorly understood. We solved the crystal structure of YfcM and performed functional analyses to determine the hydroxylation mechanism. In addition, YfcM appears to be structurally distinct from any …


Mistranslation Of The Genetic Code, Adil Moghal, Kyle Mohler, Michael Ibba Sep 2014

Mistranslation Of The Genetic Code, Adil Moghal, Kyle Mohler, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

During mRNA decoding at the ribosome, deviations from stringent codon identity, or “mistranslation,” are generally deleterious and infrequent. Observations of organisms that decode some codons ambiguously, and the discovery of a compensatory increase in mistranslation frequency to combat environmental stress have changed the way we view “errors” in decoding. Modern tools for the study of the frequency and phenotypic effects of mistranslation can provide quantitative and sensitive measurements of decoding errors that were previously inaccessible. Mistranslation with non‐protein amino acids, in particular, is an enticing prospect for new drug therapies and the study of molecular evolution.


Relaxed Substrate Specificity Leads To Extensive Trna Mischarging By Streptococcus Pneumoniae Class I And Class Ii Aminoacyl-Trna Synthetases, Jennifer Shepherd, Michael Ibba Sep 2014

Relaxed Substrate Specificity Leads To Extensive Trna Mischarging By Streptococcus Pneumoniae Class I And Class Ii Aminoacyl-Trna Synthetases, Jennifer Shepherd, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Aminoacyl-tRNA synthetases provide the first step in protein synthesis quality control by discriminating cognate from noncognate amino acid and tRNA substrates. While substrate specificity is enhanced in many instances by cis- and trans-editing pathways, it has been revealed that in organisms such as Streptococcus pneumoniae some aminoacyl-tRNA synthetases display significant tRNA mischarging activity. To investigate the extent of tRNA mischarging in this pathogen, the aminoacylation profiles of class I isoleucyl-tRNA synthetase (IleRS) and class II lysyl-tRNA synthetase (LysRS) were determined. Pneumococcal IleRS mischarged tRNAIle with both Val, as demonstrated in other bacteria, and Leu in a tRNA sequence-dependent …


Sensitivity Analysis Of Biological Boolean Networks Using Information Fusion Based On Nonadditive Set Functions, Naomi Kochi, Tomáš Helikar, Laura Allen, Jim A. Rogers, Zhenyuan Wang, Mihaela T. Matache Sep 2014

Sensitivity Analysis Of Biological Boolean Networks Using Information Fusion Based On Nonadditive Set Functions, Naomi Kochi, Tomáš Helikar, Laura Allen, Jim A. Rogers, Zhenyuan Wang, Mihaela T. Matache

Department of Biochemistry: Faculty Publications

Background: An algebraic method for information fusion based on nonadditive set functions is used to assess the joint contribution of Boolean network attributes to the sensitivity of the network to individual node mutations. The node attributes or characteristics under consideration are: in-degree, out-degree, minimum and average path lengths, bias, average sensitivity of Boolean functions, and canalizing degrees. The impact of node mutations is assessed using as target measure the average Hamming distance between a non-mutated/wild-type network and a mutated network.

Results: We find that for a biochemical signal transduction network consisting of several main signaling pathways whose nodes …


Use Of Cysteine-Reactive Crosslinkers To Probe Conformational Flexibility Of Human Dj-1 Demonstrates That Glu18 Mutations Are Dimers, Janani Prahlad, David N. Hauser, Nicole M. Milkovic, Mark R. Cookson, Mark A. Wilson Sep 2014

Use Of Cysteine-Reactive Crosslinkers To Probe Conformational Flexibility Of Human Dj-1 Demonstrates That Glu18 Mutations Are Dimers, Janani Prahlad, David N. Hauser, Nicole M. Milkovic, Mark R. Cookson, Mark A. Wilson

Department of Biochemistry: Faculty Publications

The oxidation of a key cysteine residue (Cys106) in the parkinsonism-associated protein DJ-1 regulates its ability to protect against oxidative stress and mitochondrial damage. Cys106 interacts with a neighboring protonated Glu18 residue, stabilizing the Cys106-SO2 (sulfinic acid) form of DJ-1. To study this important post-translational modification, we previously designed several Glu18 mutations (E18N, E18D, E18Q) that alter the oxidative propensity of Cys106. However, recent results suggest these Glu18 mutations cause loss of DJ-1 dimerization, which would severely compromise the protein’s function. The purpose of this study was to conclusively determine the oligomerization state of these mutants using X-ray …


Translation Initiation Rate Determines The Impact Of Ribosome Stalling On Bacterial Protein Synthesis, Steven J. Hersch, Sara Elgamal, Assaf Katz, Michael Ibba, William Wiley Navarre Aug 2014

Translation Initiation Rate Determines The Impact Of Ribosome Stalling On Bacterial Protein Synthesis, Steven J. Hersch, Sara Elgamal, Assaf Katz, Michael Ibba, William Wiley Navarre

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Ribosome stalling during translation can be caused by a number of characterized mechanisms. However, the impact of elongation stalls on protein levels is variable, and the reasons for this are often unclear. To investigate this relationship, we examined the bacterial translation elongation factor P (EF-P), which plays a critical role in rescuing ribosomes stalled at specific amino acid sequences including polyproline motifs. In previous proteomic analyses of both Salmonella and Escherichia coli efp mutants, it was evident that not all proteins containing a polyproline motif were dependent on EF-P for efficient expression in vivo . The α- and β-subunits of …


Ef-P Dependent Pauses Integrate Proximal And Distal Signals During Translation, Sara Elgamal, Assaf Katz, Steven J. Hersch, David Newsom, Peter White, William Wiley Navarre, Michael Ibba Aug 2014

Ef-P Dependent Pauses Integrate Proximal And Distal Signals During Translation, Sara Elgamal, Assaf Katz, Steven J. Hersch, David Newsom, Peter White, William Wiley Navarre, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Elongation factor P (EF-P) is required for the efficient synthesis of proteins with stretches of consecutive prolines and other motifs that would otherwise lead to ribosome pausing. However, previous reports also demonstrated that levels of most diprolyl-containing proteins are not altered by the deletion of efp. To define the particular sequences that trigger ribosome stalling at diprolyl (PPX) motifs, we used ribosome profiling to monitor global ribosome occupancy in Escherichia coli strains lacking EF-P. Only 2.8% of PPX motifs caused significant ribosomal pausing in the Δefp strain, with up to a 45-fold increase in ribosome density observed at …


Applications And Improvements In The Molecular Modeling Of Protein And Ligand Interactions, Jason Bret Harris Aug 2014

Applications And Improvements In The Molecular Modeling Of Protein And Ligand Interactions, Jason Bret Harris

Doctoral Dissertations

Understanding protein and ligand interactions is fundamental to treat disease and avoid toxicity in biological organisms. Molecular modeling is a helpful but imperfect tool used in computer-aided toxicology and drug discovery. In this work, molecular docking and structural informatics have been integrated with other modeling methods and physical experiments to better understand and improve predictions for protein and ligand interactions. Results presented as part of this research include:

1.) an application of single-protein docking for an intermediate state structure, specifically, modeling an intermediate state structure of alpha-1-antitrypsin and using the resulting model to virtually screen for chemical inhibitors that can …


Trnas As Regulators Of Biological Processes, Medha Raina, Michael Ibba Jun 2014

Trnas As Regulators Of Biological Processes, Medha Raina, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Transfer RNAs (tRNA) are best known for their role as adaptors during translation of the genetic code. Beyond their canonical role during protein biosynthesis, tRNAs also perform additional functions in both prokaryotes and eukaryotes for example in regulating gene expression. Aminoacylated tRNAs have also been implicated as substrates for non-ribosomal peptide bond formation, post-translational protein labeling, modification of phospholipids in the cell membrane, and antibiotic biosyntheses. Most recently tRNA fragments, or tRFs, have also been recognized to play regulatory roles. Here, we examine in more detail some of the new functions emerging for tRNA in a variety of cellular processes …


Oxidation Of Cellular Amino Acid Pools Leads To Cytotoxic Mistranslation Of The Genetic Code, Tammy J. Bullwinkle, Noah M. Reynolds, Medha Raina, Adil Moghal, Eleftheria Matsa, Andrei Rajkovic, Huseyin Kayadibi, Farbod Fazlollahi, Christopher Ryan, Nathaniel Howitz, Kym F. Faull, Beth A. Lazazzera, Michael Ibba Jun 2014

Oxidation Of Cellular Amino Acid Pools Leads To Cytotoxic Mistranslation Of The Genetic Code, Tammy J. Bullwinkle, Noah M. Reynolds, Medha Raina, Adil Moghal, Eleftheria Matsa, Andrei Rajkovic, Huseyin Kayadibi, Farbod Fazlollahi, Christopher Ryan, Nathaniel Howitz, Kym F. Faull, Beth A. Lazazzera, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Aminoacyl-tRNA synthetases use a variety of mechanisms to ensure fidelity of the genetic code and ultimately select the correct amino acids to be used in protein synthesis. The physiological necessity of these quality control mechanisms in different environments remains unclear, as the cost vs benefit of accurate protein synthesis is difficult to predict. We show that in Escherichia coli, a non-coded amino acid produced through oxidative damage is a significant threat to the accuracy of protein synthesis and must be cleared by phenylalanine-tRNA synthetase in order to prevent cellular toxicity caused by mis-synthesized proteins. These findings demonstrate how stress …


Implications Of The Landauer Limit For Quantum Logic, F. Matthew Mihelic May 2014

Implications Of The Landauer Limit For Quantum Logic, F. Matthew Mihelic

Faculty Publications

The design of any system of quantum logic must take into account the implications of the Landauer limit for logical bits. Useful computation implies a deterministic outcome, and so any system of quantum computation must produce a final deterministic outcome, which in a quantum computer requires a quantum decision that produces a deterministic qubit. All information is physical, and any bit of information can be considered to exist in a physicality represented as a decision between the two wells of a double well potential in which the energy barrier between the two wells must be greater than kT·ln2. Any proposed …


Reduced Amino Acid Specificity Of Mammalian Tyrosyl-Trna Synthetase Is Associated With Elevated Mistranslation Of Tyr Codons, Medha Raina, Adil Moghal, Amanda Kano, Mathew Jerums, Paul D. Schnier, Shun Luo, Rohini Deshpande, Pavel D. Bondarenko, Henry Lin, Michael Ibba May 2014

Reduced Amino Acid Specificity Of Mammalian Tyrosyl-Trna Synthetase Is Associated With Elevated Mistranslation Of Tyr Codons, Medha Raina, Adil Moghal, Amanda Kano, Mathew Jerums, Paul D. Schnier, Shun Luo, Rohini Deshpande, Pavel D. Bondarenko, Henry Lin, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Quality control operates at different steps in translation to limit errors to approximately one mistranslated codon per 10,000 codons during mRNA-directed protein synthesis. Recent studies have suggested that error rates may actually vary considerably during translation under different growth conditions. Here we examined the misincorporation of Phe at Tyr codons during synthesis of a recombinant antibody produced in tyrosine-limited Chinese hamster ovary (CHO) cells. Tyr to Phe replacements were previously found to occur throughout the antibody at a rate of up to 0.7% irrespective of the identity or context of the Tyr codon translated. Despite this comparatively high mistranslation rate, …


Acceleration And Verification Of Virtual High-Throughput Multiconformer Docking, Sally Rose Ellingson May 2014

Acceleration And Verification Of Virtual High-Throughput Multiconformer Docking, Sally Rose Ellingson

Doctoral Dissertations

The work in this dissertation explores the use of massive computational power available through modern supercomputers as a virtual laboratory to aid drug discovery. As of November 2013, Tianhe-2, the fastest supercomputer in the world, has a theoretical performance peak of 54,902 TFlop/s or nearly 55 thousand trillion calculations per second. The Titan supercomputer located at Oak Ridge National Laboratory has 560,640 computing cores that can work in parallel to solve scientific problems. In order to harness this computational power to assist in drug discovery, tools are developed to aid in the preparation and analysis of high-throughput virtual docking screens, …


A Course-Based Research Experience: How Benefits Change With Increased Investment In Instructional Time, Christopher D. Shaffer, Cheryl Bailey, Students And Tas In Genomics Education Partnership Courses Apr 2014

A Course-Based Research Experience: How Benefits Change With Increased Investment In Instructional Time, Christopher D. Shaffer, Cheryl Bailey, Students And Tas In Genomics Education Partnership Courses

Department of Biochemistry: Faculty Publications

There is widespread agreement that science, technology, engineering, and mathematics programs should provide undergraduates with research experience. Practical issues and limited resources, however, make this a challenge.We have developed a bioinformatics project that provides a coursebased research experience for students at a diverse group of schools and offers the opportunity to tailor this experience to local curriculum and institution-specific student needs. We assessed both attitude and knowledge gains, looking for insights into how students respond given this wide range of curricular and institutional variables. While different approaches all appear to result in learning gains, we find that a significant investment …


Structures Of The Puta Peripheral Membrane Flavoenzyme Reveal A Dynamic Substrate-Channeling Tunnel And The Quinone-Binding Site, Harkewal Singh, Benjamin W. Arentson, Donald F. Becker, John J. Tanner Mar 2014

Structures Of The Puta Peripheral Membrane Flavoenzyme Reveal A Dynamic Substrate-Channeling Tunnel And The Quinone-Binding Site, Harkewal Singh, Benjamin W. Arentson, Donald F. Becker, John J. Tanner

Department of Biochemistry: Faculty Publications

Proline utilization A (PutA) proteins are bifunctional peripheral membrane flavoenzymes that catalyze the oxidation of L-proline to L-glutamate by the sequential activities of proline dehydrogenase and aldehyde dehydrogenase domains. Located at the inner membrane of Gram-negative bacteria, PutAs play a major role in energy metabolism by coupling the oxidation of proline imported from the environment to the reduction of membrane-associated quinones. Here, we report seven crystal structures of the 1,004- residue PutA from Geobacter sulfurreducens, along with determination of the protein oligomeric state by small-angle X-ray scattering and kinetic characterization of substrate channeling and quinone reduction. The structures reveal …


Genome-Wide Rnai Ionomics Screen Reveals New Genes And Regulation Of Human Trace Element Metabolism, Mikalai I. Malinouski, Nesrin M. Hasan, Yan Zhang, Javier Seravalli, Jie Lin, Andrei Avanesov, Svetlana Lutsenko, Vadim N. Gladyshev Feb 2014

Genome-Wide Rnai Ionomics Screen Reveals New Genes And Regulation Of Human Trace Element Metabolism, Mikalai I. Malinouski, Nesrin M. Hasan, Yan Zhang, Javier Seravalli, Jie Lin, Andrei Avanesov, Svetlana Lutsenko, Vadim N. Gladyshev

Department of Biochemistry: Faculty Publications

Trace elements are essential for human metabolism and dysregulation of their homoeostasis is associated with numerous disorders. Here we characterize mechanisms that regulate trace elements in human cells by designing and performing a genome-wide high-throughput siRNA/ionomics screen, and examining top hits in cellular and biochemical assays. The screen reveals high stability of the ionomes, especially the zinc ionome, and yields known regulators and novel candidates. We further uncover fundamental differences in the regulation of different trace elements. Specifically, selenium levels are controlled through the selenocysteine machinery and expression of abundant selenoproteins; copper balance is affected by lipid metabolism and requires …


The Abcs Of The Ribosome, Kurt Fredrick, Michael Ibba Feb 2014

The Abcs Of The Ribosome, Kurt Fredrick, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

An ABC protein that binds the ribosomal exit site suggests a new mechanism for direct regulation of translation in response to changing ATP levels in the cell.


Arabidopsis Accelerated Cell Death 11, Acd11, Is A Ceramide-1-Phosphate Transfer Protein And Intermediary Regulator Of Phytoceramide Levels, Dhirendra K. Simanshu, Xiuhong Zhai, David Munch, Daniel Hofius, Jennifer E. Markham, Jacek Bielawski, Alicja Bielawska, Lucy Malinina, Julian G. Molotkovsky, John W. Mundy, Dinshaw J. Patel, Rhoderick E. Brown Jan 2014

Arabidopsis Accelerated Cell Death 11, Acd11, Is A Ceramide-1-Phosphate Transfer Protein And Intermediary Regulator Of Phytoceramide Levels, Dhirendra K. Simanshu, Xiuhong Zhai, David Munch, Daniel Hofius, Jennifer E. Markham, Jacek Bielawski, Alicja Bielawska, Lucy Malinina, Julian G. Molotkovsky, John W. Mundy, Dinshaw J. Patel, Rhoderick E. Brown

Department of Biochemistry: Faculty Publications

The accelerated cell death 11 (acd11) mutant of Arabidopsis provides a genetic model for studying immune response activation and localized cellular suicide that halt pathogen spread during infection in plants. Here, we elucidate ACD11 structure and function and show that acd11 disruption dramatically alters the in vivo balance of sphingolipid mediators that regulate eukaryotic-programmed cell death. In acd11 mutants, normally low ceramide-1- phosphate (C1P) levels become elevated, but the relatively abundant cell death inducer phytoceramide rises acutely. ACD11 exhibits selective intermembrane transfer of C1P and phyto-C1P. Crystal structures establish C1P binding via a surface-localized, phosphate headgroup recognition center …


Biochemical Analysis Of Blood Of Native Cattle In The Hilly Area Of Bangladesh, M. A. Mamun, M. M. Hassan, A. H. Shaikat, S.K.M.A. Islam, M. A. Hoque, M. Uddin, M. B. Hossain Jan 2014

Biochemical Analysis Of Blood Of Native Cattle In The Hilly Area Of Bangladesh, M. A. Mamun, M. M. Hassan, A. H. Shaikat, S.K.M.A. Islam, M. A. Hoque, M. Uddin, M. B. Hossain

Biochemistry Collection

A yearlong study was carried out in indigenous cattle of five upazila namely Khagrachari Sadar, Laxmichari, Matiranga, Mahalchari and Dighinala in Khagrachari Hill District, Bangladesh for determination of statuses of various biochemical parameters. Apparently healthy cattle (100) were selected and blood samples were collected aseptically. Biochemical analysis of carbohydrates, proteins, fats, minerals, electrolytes and enzymes were performed by using automated biochemical analyzer (Humalizer®-3000). The results showed that, the variations of parameters were not significant (P>0.05) between male and female. Although there was a slight increase of calcium 8.01±0.32mg/dl, glucose 69.21±2.31mg/dl, LDL 5.69±0.22mg/dl and uric acid 3.85±0.34mg/dl of female compared …


Emerging Roles For Hyaluronidase In Cancer Metastasis And Therapy, Caitlin O. Mcatee, Joseph J. Barycki, Melanie A. Simpson Jan 2014

Emerging Roles For Hyaluronidase In Cancer Metastasis And Therapy, Caitlin O. Mcatee, Joseph J. Barycki, Melanie A. Simpson

Department of Biochemistry: Faculty Publications

Hyaluronidases are a family of five human enzymes that have been differentially implicated in the progression of many solid tumor types, both clinically and in functional studies. Advances in the past five years have clarified many apparent contradictions, (1) by demonstrating that specific hyaluronidases have alternative substrates to hyaluronan (HA) or do not exhibit any enzymatic activity, (2) that high molecular weight HA polymers elicit signaling effects that are opposite those of the hyaluronidase-digested HA oligomers, and (3) that it is actually the combined overexpression of HA synthesizing enzymes with hyaluronidases that confers tumorigenic potential. This review examines the literature …


Saturated Free Fatty Acids Induce Cholangiocyte Lipoapoptosis, Sathish Kumar Natarajan, Sally A. Ingham, Ashley M. Mohr, Cody J. Wehrkamp, Anuttoma Ray, Sohini Roy, Sophie C. Cazanave, Mary Anne Phillippi, Justin L. Mott Jan 2014

Saturated Free Fatty Acids Induce Cholangiocyte Lipoapoptosis, Sathish Kumar Natarajan, Sally A. Ingham, Ashley M. Mohr, Cody J. Wehrkamp, Anuttoma Ray, Sohini Roy, Sophie C. Cazanave, Mary Anne Phillippi, Justin L. Mott

Department of Biochemistry: Faculty Publications

Recent studies have identified a cholestatic variant of nonalcoholic fatty liver disease (NAFLD) with portal inflammation and ductular reaction. Based on reports of biliary damage, as well as increased circulating free fatty acids (FFAs) in NAFLD, we hypothesized the involvement of cholangiocyte lipoapoptosis as a mechanism of cellular injury. Here, we demonstrate that the saturated FFAs palmitate and stearate induced robust and rapid cell death in cholangiocytes. Palmitate and stearate induced cholangiocyte lipoapoptosis in a concentration-dependent manner in multiple cholangiocyte-derived cell lines. The mechanism of lipoapoptosis relied on the activation of caspase 3/7 activity. There was also a significant up-regulation …


Stress-Triggered Activation Of The Metalloprotease Oma1 Involves Its C-Terminal Region And Is Important For Mitochondrial Stress Protection In Yeast, Iryna Bohovych, Garrett Donaldson, Sara Christianson, Nataliya Zahayko, Oleh Khalimonchuk Jan 2014

Stress-Triggered Activation Of The Metalloprotease Oma1 Involves Its C-Terminal Region And Is Important For Mitochondrial Stress Protection In Yeast, Iryna Bohovych, Garrett Donaldson, Sara Christianson, Nataliya Zahayko, Oleh Khalimonchuk

Department of Biochemistry: Faculty Publications

Background: Oma1 is a conserved membrane-bound protease that forms a high molecular mass complex.

Results: Oma1 activity is induced by stress stimuli and required for survival. The activation is linked to changes in Oma1 oligomer stability and involves its C-terminal region.

Conclusion: Oma1 function is activated by mitochondrial stress and is important for stress tolerance.

Significance: Novel insights into Oma1 function and a potential stress activation mechanism are provided.


Evidence For Hysteretic Substrate Channeling In The Proline Dehydrogenaseand ∆1-Pyrroline-5-Carboxylate Dehydrogenase Coupled Reaction Of Proline Utilizationa(Puta), Michael A Moxley, Nikhilesh Sanyal, Navasona Krishnan, John J. Tanner, Donald F. Becker Jan 2014

Evidence For Hysteretic Substrate Channeling In The Proline Dehydrogenaseand ∆1-Pyrroline-5-Carboxylate Dehydrogenase Coupled Reaction Of Proline Utilizationa(Puta), Michael A Moxley, Nikhilesh Sanyal, Navasona Krishnan, John J. Tanner, Donald F. Becker

Department of Biochemistry: Faculty Publications

Background: PutA from Escherichia coli is a bifunctional enzyme and transcriptional repressor in proline catabolism.

Results: Steady-state and transient kinetic data revealed a mechanism in which the two enzymatic reactions are coupled by an activation step.

Conclusion: Substrate channeling in PutA exhibits hysteretic behavior.

Significance: This is the first kinetic model of bi-enzyme activity in PutA and reveals a novel mechanism of channeling activation.


Preliminary Joint X-Ray And Neutron Protein Crystallographic Studies Of Ecdhfr Complexed With Folate And Nadp+, Qun Wan, Audrey Y. Kovalevsky, Mark A. Wilson, Brad C. Bennett, Paul Langan, Chris Dealwis Jan 2014

Preliminary Joint X-Ray And Neutron Protein Crystallographic Studies Of Ecdhfr Complexed With Folate And Nadp+, Qun Wan, Audrey Y. Kovalevsky, Mark A. Wilson, Brad C. Bennett, Paul Langan, Chris Dealwis

Department of Biochemistry: Faculty Publications

A crystal of Escherichia coli dihydrofolate reductase (ecDHFR) complexed with folate and NADP+ of 4 x 1.3 x 0.7 mm (3.6 mm3) in size was obtained by sequential application of microseeding and macroseeding. A neutron diffraction data set was collected to 2.0 A resolution using the IMAGINE diffractometer at the High Flux Isotope Reactor within Oak Ridge National Laboratory. A 1.6 A resolution X-ray data set was also collected from a smaller crystal at room temperature. The neutron and X-ray data were used together for joint refinement of the ecDHFR–folate–NADP+ ternary-complex structure in order to examine …


Evaluation Of Three Herbicide Resistance Genes For Use In Genetic Transformations And For Potential Crop Protection In Algae Production, Andrew J. Bruggeman, Daniel Kuehler, Donald P. Weeks Jan 2014

Evaluation Of Three Herbicide Resistance Genes For Use In Genetic Transformations And For Potential Crop Protection In Algae Production, Andrew J. Bruggeman, Daniel Kuehler, Donald P. Weeks

Department of Biochemistry: Faculty Publications

Genes conferring resistance to the herbicides glyphosate, oxyfluorfen and norflurazon were developed and tested for use as dominant selectable markers in genetic transformation of Chlamydomonas reinhardtii and as potential tools for the protection of commercial-scale algal production facilities against contamination by organisms sensitive to these broad-spectrum herbicides. A synthetic glyphosate acetyltransferase (GAT) gene, when fitted with a strong Chlamydomonas promoter, conferred a 2.79-fold increase in tolerance to the EPSPS inhibitor, glyphosate, in transgenic cells compared with progenitor WT cells. A mutant Chlamydomonas protoporphyrinogen oxidase (protox, PPO) gene previously shown to produce an enzyme insensitive to PPO-inhibiting herbicides, when genetically engineered, …


Homogeneous Low-Molecular-Weight Heparins With Reversible Anticoagulant Activity, Yongmei Xu, Chao Cai, Kasemsiri Chandarajoti, Po-Hung Hsieh, Lingyun Li, Truong Q. Pham, Erica M. Sparkenbaugh, Juzheng Sheng, Nigel S. Key, Rafal Pawlinski, Edward N. Harris, Robert J. Linhardt, Jian Liu Jan 2014

Homogeneous Low-Molecular-Weight Heparins With Reversible Anticoagulant Activity, Yongmei Xu, Chao Cai, Kasemsiri Chandarajoti, Po-Hung Hsieh, Lingyun Li, Truong Q. Pham, Erica M. Sparkenbaugh, Juzheng Sheng, Nigel S. Key, Rafal Pawlinski, Edward N. Harris, Robert J. Linhardt, Jian Liu

Department of Biochemistry: Faculty Publications

Low-molecular-weight heparins (LMWHs) are carbohydrate-based anticoagulants clinically used to treat thrombotic disorders, but impurities, structural heterogeneity or functional irreversibility can limit treatment options. We report a series of synthetic LMWHs prepared by cost-effective chemoenzymatic methods. The high activity of one defined synthetic LMWH against human factor Xa (FXa) was reversible in vitro and in vivo using protamine, demonstrating that synthetically accessible constructs can have a critical role in the next generation of LMWHs.


Pharmacokinetic And Biodistribution Assessment Of A Near Infrared-Labeled Psma-Specific Small Molecule In Tumor-Bearing Mice, Joy L. Kovar, Lael L. Cheung, Melanie A. Simpson, D. Michael Olive Jan 2014

Pharmacokinetic And Biodistribution Assessment Of A Near Infrared-Labeled Psma-Specific Small Molecule In Tumor-Bearing Mice, Joy L. Kovar, Lael L. Cheung, Melanie A. Simpson, D. Michael Olive

Department of Biochemistry: Faculty Publications

Prostate cancer is themost frequently diagnosed cancer in men and often requires surgery. Use of near infrared (NIR) technologies to perform image-guided surgery may improve accurate delineation of tumor margins. To facilitate preclinical testing of such outcomes, here we developed and characterized a PSMA-targeted small molecule, YC-27. IRDye 800CW was conjugated to YC-27 or an anti-PSMA antibody used for reference. Human 22Rv1, PC3M-LN4, and/or LNCaP prostate tumor cells were exposed to the labeled compounds. In vivo targeting and clearance properties were determined in tumor-bearing mice. Organs and tumors were excised and imaged to assess probe localization. YC-27 exhibited a dose …


Stress Adaptation In A Pathogenic Fungus, Alistair J. P. Brown, Susan Budge, Despoina Kaloriti, Anna Tillmann, Mette D. Jacobsen, Zhikang Yin, Iuliana V. Ene, Iryna Bohovych, Doblin Sandai, Stavroula Kastora, Joanna Potrykus, Elizabeth R. Ballou, Delma S. Childers, Shahida Shahana, Michelle D. Leach Jan 2014

Stress Adaptation In A Pathogenic Fungus, Alistair J. P. Brown, Susan Budge, Despoina Kaloriti, Anna Tillmann, Mette D. Jacobsen, Zhikang Yin, Iuliana V. Ene, Iryna Bohovych, Doblin Sandai, Stavroula Kastora, Joanna Potrykus, Elizabeth R. Ballou, Delma S. Childers, Shahida Shahana, Michelle D. Leach

Department of Biochemistry: Faculty Publications

Candida albicans is a major fungal pathogen of humans. This yeast is carried by many individuals as a harmless commensal, but when immune defences are perturbed it causes mucosal infections (thrush). Additionally, when the immune system becomes severely compromised, C. albicans often causes life-threatening systemic infections. A battery of virulence factors and fitness attributes promote the pathogenicity of C. albicans. Fitness attributes include robust responses to local environmental stresses, the inactivation of which attenuates virulence. Stress signalling pathways in C. albicans include evolutionarily conserved modules. However, there has been rewiring of some stress regulatory circuitry such that the roles of …