Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 40 of 40

Full-Text Articles in Nanoscience and Nanotechnology

Integration Of Flow Studies For Robust Selection Of Mechanoresponsive Genes, Nataly Maimari, Ryan M. Pedrigi, Alessandra Russo, Krysia Broda, Rob Krams Jan 2016

Integration Of Flow Studies For Robust Selection Of Mechanoresponsive Genes, Nataly Maimari, Ryan M. Pedrigi, Alessandra Russo, Krysia Broda, Rob Krams

Department of Mechanical and Materials Engineering: Faculty Publications

Blood flow is an essential contributor to plaque growth, composition and initiation. It is sensed by endothelial cells, which react to blood flow by expressing >1000 genes. The sheer number of genes implies that one needs genomic techniques to unravel their response in disease. Individual genomic studies have been performed but lack sufficient power to identify subtle changes in gene expression. In this study, we investigated whether a systematic meta-analysis of available microarray studies can improve their consistency.

We identified 17 studies using microarrays, of which 6 were performed in vivo and 11 in vitro. The in vivo studies were …


Floating-Gate Transistor Photodetector With Light Absorbing Layer, Jinsong Huang, Yongbo Yuan Jan 2016

Floating-Gate Transistor Photodetector With Light Absorbing Layer, Jinsong Huang, Yongbo Yuan

Department of Mechanical and Materials Engineering: Faculty Publications

A field effect transistor photodetector that can operate in room temperature includes a source electrode, a drain electrode, a channel to allow an electric current to flow between the drain and source electrodes, and a gate electrode to receive a bias voltage for controlling the current in the channel. The photodetector includes a light-absorbing material that absorbs light and traps electric charges. The light-absorbing material is configured to generate one or more charges upon absorbing light having a wavelength within a specified range and to hold the one or more charges. The one or more charges held in the light-absorbing …


Graphene Platform For Neural Regenerative Medicine, Tasneem Bouzid, Alexander Sinitskii, Jung Yul Lim Jan 2016

Graphene Platform For Neural Regenerative Medicine, Tasneem Bouzid, Alexander Sinitskii, Jung Yul Lim

Department of Mechanical and Materials Engineering: Faculty Publications

Graphene is a material composed of a single layer of carbon atoms arranged in a two-dimensional honeycomb lattice. The unique electrical, optical, thermal, and mechanical properties of graphene are extensively exploited for various applications in electronics, energy, and sensors. Studies also proposed the potential of graphene for biomedical applications. The intrinsic characteristics of graphene and its availability for chemical and physical modifications make graphene a promising vehicle for various biomedical applications including drug delivery, bioimaging, disease diagnostics, etc. The chemical structure of graphene and, in turn, its functionality, can be altered by attaching functional groups, which not only modify the …


Mode-Converted Ultrasonic Scattering In Polycrystals With Elongated Grains, Andrea P. Arguelles, Christopher M. Kube, Ping Hu, Joseph A. Turner Jan 2016

Mode-Converted Ultrasonic Scattering In Polycrystals With Elongated Grains, Andrea P. Arguelles, Christopher M. Kube, Ping Hu, Joseph A. Turner

Department of Mechanical and Materials Engineering: Faculty Publications

Elastic wave scattering is used to study polycrystalline media for a wide range of applications. Received signals, which include scattering from the randomly oriented grains comprising the polycrystal, contain information from which useful microstructural parameters may often be inferred. Recently, a mode-converted diffuse ultrasonic scattering model was developed for evaluating the scattered response of a transverse wave from an incident longitudinal wave in a polycrystalline medium containing equiaxed single-phase grains with cubic elastic symmetry. In this article, that theoretical mode-converted scattering model is modified to account for grain elongation within the sample. The model shows the dependence on scattering angle …


Expanded 3d Nanofiber Scaffolds: Cell Penetration, Neovascularization, And Host Response, Jiang Jiang, Zhuoran Li, Hongjun Wang, Yue Wang, Mark A. Carlson, Matthew J. Teusink, Matthew R. Macewan, Linxia Gu, Jingwei Xie Jan 2016

Expanded 3d Nanofiber Scaffolds: Cell Penetration, Neovascularization, And Host Response, Jiang Jiang, Zhuoran Li, Hongjun Wang, Yue Wang, Mark A. Carlson, Matthew J. Teusink, Matthew R. Macewan, Linxia Gu, Jingwei Xie

Department of Mechanical and Materials Engineering: Faculty Publications

Herein, a robust method to fabricate expanded nanofiber scaffolds with controlled size and thickness using a customized mold during the modified gas-foaming process is reported. The expansion of nanofiber membranes is also simulated using a computational fluid model. Expanded nanofiber scaffolds implanted subcutaneously in rats show cellular infiltration, whereas non-expanded scaffolds only have surface cellular attachment. Compared to unexpanded nanofiber scaffolds, more CD68+ and CD163+ cells are observed within expanded scaffolds at all tested time points post-implantation. More CCR7+ cells appear within expanded scaffolds at week 8 post-implantation. In addition, new blood vessels are present within the expanded scaffolds at …


Bioink Properties Before, During And After 3d Bioprinting, Katja Holzl, Shengmao Lin, Liesbeth Tytgat, Sandra Van Vlierberghe, Linxia Gu, Aleksandr Ovsianikov Jan 2016

Bioink Properties Before, During And After 3d Bioprinting, Katja Holzl, Shengmao Lin, Liesbeth Tytgat, Sandra Van Vlierberghe, Linxia Gu, Aleksandr Ovsianikov

Department of Mechanical and Materials Engineering: Faculty Publications

Bioprinting is a process based on additive manufacturing from materials containing living cells. These materials, often referred to as bioink, are based on cytocompatible hydrogel precursor formulations, which gel in a manner compatible with different bioprinting approaches. The bioink properties before, during and after gelation are essential for its printability, comprising such features as achievable structural resolution, shape fidelity and cell survival. However, it is the final properties of the matured bioprinted tissue construct that are crucial for the end application. During tissue formation these properties are influenced by the amount of cells present in the construct, their proliferation, migration …


Influence Of Shear Stress Magnitude And Direction On Atherosclerotic Plaque Composition, Ryan M. Pedrigi, Vikram V. Mehta, Sandra M. Bovens, Zahra Mohri, Christian Bo Poulsen, Willy Gsell, Jordi L. Tremoleda, Leila Towhidi, Ranil De Silva, Enrico Petretto, Rob Krams Jan 2016

Influence Of Shear Stress Magnitude And Direction On Atherosclerotic Plaque Composition, Ryan M. Pedrigi, Vikram V. Mehta, Sandra M. Bovens, Zahra Mohri, Christian Bo Poulsen, Willy Gsell, Jordi L. Tremoleda, Leila Towhidi, Ranil De Silva, Enrico Petretto, Rob Krams

Department of Mechanical and Materials Engineering: Faculty Publications

The precise flow characteristics that promote different atherosclerotic plaque types remain unclear. We previously developed a blood flow-modifying cuff for ApoE−/− mice that induces the development of advanced plaques with vulnerable and stable features upstream and downstream of the cuff, respectively. Herein, we sought to test the hypothesis that changes in flow magnitude promote formation of the upstream (vulnerable) plaque, whereas altered flow direction is important for development of the downstream (stable) plaque. We instrumented ApoE−/− mice (n=7) with a cuff around the left carotid artery and imaged them with micro-CT (39.6 μm resolution) eight to nine weeks …


Comparison Between Direct And Reverse Electroporation Of Cells In Situ: A Simulation Study, Leila Towhidi, Delaram Khodadadi, Nataly Maimari, Ryan M. Pedrigi, Henry Ip, Zoltan Kis, Brenda R. Kwak, Tatiana W. Petrova, Mauro Delorenzi, Rob Krams Jan 2016

Comparison Between Direct And Reverse Electroporation Of Cells In Situ: A Simulation Study, Leila Towhidi, Delaram Khodadadi, Nataly Maimari, Ryan M. Pedrigi, Henry Ip, Zoltan Kis, Brenda R. Kwak, Tatiana W. Petrova, Mauro Delorenzi, Rob Krams

Department of Mechanical and Materials Engineering: Faculty Publications

The discovery of the human genome has unveiled new fields of genomics, transcriptomics, and proteomics, which has produced paradigm shifts on how to study disease mechanisms, wherein a current central focus is the understanding of how gene signatures and gene networks interact within cells. These gene function studies require manipulating genes either through activation or inhibition, which can be achieved by temporarily permeabilizing the cell membrane through transfection to deliver cDNA or RNAi. An efficient transfection technique is electroporation, which applies an optimized electric pulse to permeabilize the cells of interest. When the molecules are applied on top of seeded …


In Situ Microscopy Of The Self-Assembly Of Branched Nanocrystals In Solution, Eli Sutter, Peter Sutter, Alexei V. Tkachenko, Roman Krahne, Joost De Graaf, Milena Arciniegas, Liberato Manna Jan 2016

In Situ Microscopy Of The Self-Assembly Of Branched Nanocrystals In Solution, Eli Sutter, Peter Sutter, Alexei V. Tkachenko, Roman Krahne, Joost De Graaf, Milena Arciniegas, Liberato Manna

Department of Mechanical and Materials Engineering: Faculty Publications

Solution-phase self-assembly of nanocrystals into mesoscale structures is a promising strategy for constructing functional materials from nanoscale components. Liquid environments are key to self-assembly since they allow suspended nanocrystals to diffuse and interact freely, but they also complicate experiments. Real-time observations with single-particle resolution could have transformative impact on our understanding of nanocrystal self-assembly. Here we use real-time in situ imaging by liquid-cell electron microscopy to elucidate the nucleation and growth mechanism and properties of linear chains of octapod-shaped nanocrystals in their native solution environment. Statistical mechanics modelling based on these observations and using the measured chain-length distribution clarifies the …


Propagation Of Extensional Waves In A Piezoelectric Semiconductor Rod, C.L. Zhang, X. Y. Wang, W. Q. Chen, J. S. Yang Jan 2016

Propagation Of Extensional Waves In A Piezoelectric Semiconductor Rod, C.L. Zhang, X. Y. Wang, W. Q. Chen, J. S. Yang

Department of Mechanical and Materials Engineering: Faculty Publications

We studied the propagation of extensional waves in a thin piezoelectric semiconductor rod of ZnO whose c-axis is along the axis of the rod. The macroscopic theory of piezoelectric semiconductors was used which consists of the coupled equations of piezoelectricity and the conservation of charge. The problem is nonlinear because the drift current is the product of the unknown electric field and the unknown carrier density. A perturbation procedure was used which resulted in two one-way coupled linear problems of piezoelectricity and the conservation of charge, respectively. The acoustic wave and the accompanying electric field were obtained from the equations …