Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 26 of 26

Full-Text Articles in Nanoscience and Nanotechnology

Characterization Of Coupled Gold Nanoparticles In A Sparsely Populated Square Lattice, Roy Truett French Iii May 2017

Characterization Of Coupled Gold Nanoparticles In A Sparsely Populated Square Lattice, Roy Truett French Iii

Theses and Dissertations

Metal nanoparticles deposited in regular arrays spaced at optical wavelengths support a resonance due to a coherent coupling between localized surface plasmon mode and lattice diffraction allowing for engineering of tunable devices for use in biological sensors, nanoantennae, and enhanced spectroscopy. Techniques such as electron beam lithography, focused ion beam lithography, nanosphere lithography, and nanoimprint lithography are used for fabrication but are limited by cost, device throughput, and small deposition. Polymer soft lithography and continuous dewetting of particles is a potentially viable alternative showing promise in all of those areas. This thesis developed the fabrication of a refined hydrophilic nanoimprinted ...


Towards Building A Prototype Spin-Logic Device, Ashish Verma Penumatcha Dec 2016

Towards Building A Prototype Spin-Logic Device, Ashish Verma Penumatcha

Open Access Dissertations

Since the late 1980s, several key discoveries, such as Giant and Tunneling Magne- toresistance, and advances in magnetic materials have paved the way for exponentially higher bit-densities in magnetic storage. In particular, the discovery of Spin-Transfer Torque (STT) has allowed information to be written to individual magnets using spin-currents. This has replaced the more traditional Oersted-field control used in field-MRAMs and allowed further scaling of magnetic-memories. A less obvious con- sequence of STT is that it has made possible a logic-technology based on magnets controlled by spin-polarized currents. Charge-coupled Spin Logic (CSL) is one such device proposal that couples a ...


Interactive Physics And Characteristics Of Photons And Photoelectrons In Hyperbranched Zinc Oxide Nanostructures, Garrett Edward Torix Dec 2016

Interactive Physics And Characteristics Of Photons And Photoelectrons In Hyperbranched Zinc Oxide Nanostructures, Garrett Edward Torix

Theses and Dissertations

As is commonly known, the world is full of technological wonders, where a multitude of electronic devices and instruments continuously help push the boundaries of scientific knowledge and discovery. These new devices and instruments of science must be utilized at peak efficiency in order to benefit humanity with the most advanced scientific knowledge. In order to attain this level of efficiency, the materials which make up these electronics, or possibly more important, the fundamental characteristics of these materials, must be fully understood. The following research attempted to uncover the properties and characteristics of a selected family of materials. Herein, zinc ...


Nanophotonics For Dark Materials, Filters, And Optical Magnetism, Mengren Man Aug 2016

Nanophotonics For Dark Materials, Filters, And Optical Magnetism, Mengren Man

Open Access Dissertations

Research on nanophotonic structures for three application areas is described, a near perfect optical absorber based on a graphene/dielectric stack, an ultraviolet bandpass filter formed with an aluminum/dielectric stack, and structures exhibiting homogenizable magnetic properties at infrared frequencies. The graphene stack can be treated as a effective, homogenized medium that can be designed to reflect little light and absorb an astoundingly high amount per unit thickness, making it an ideal dark material and providing a new avenue for photonic devices based on two-dimensional materials. Another material stack arrangement with thin layers of metal and insulator forms a multi-cavity ...


Laser Direct Written Silicon Nanowires For Electronic And Sensing Applications, Woongsik Nam Aug 2016

Laser Direct Written Silicon Nanowires For Electronic And Sensing Applications, Woongsik Nam

Open Access Dissertations

Silicon nanowires are promising building blocks for high-performance electronics and chemical/biological sensing devices due to their ultra-small body and high surface-to-volume ratios. However, the lack of the ability to assemble and position nanowires in a highly controlled manner still remains an obstacle to fully exploiting the substantial potential of nanowires. Here we demonstrate a one-step method to synthesize intrinsic and doped silicon nanowires for device applications. Sub-diffraction limited nanowires as thin as 60 nm are synthesized using laser direct writing in combination with chemical vapor deposition, which has the advantages of in-situ doping, catalyst-free growth, and precise control of ...


Efficient Inelastic Scattering In Atomistic Tight Binding, James A. Charles Aug 2016

Efficient Inelastic Scattering In Atomistic Tight Binding, James A. Charles

Open Access Theses

In this thesis, the coherent and incoherent transport simulation capabilities of the multipurpose nanodevice simulation tool NEMO5 are presented and applied on transport in tunneling field-effect transistors (TFET). A gentle introduction is given to the non-equilibrium Green's function theory. The comparison with experimental resistivity data confirms the validity of the electron-phonon scattering models. Common pitfalls of numerical implementations such as current conservation, energy mesh resolution, and recursive Green's function stability and the applicability of common approximations of scattering self-energies are discussed. The impact of phonon-assisted tunneling on the performance of TFETs is exemplified with a concrete Si nanowire ...


Energy Harvesting Using Photovoltaic And Betavoltaic Devices, Ashish Sharma Apr 2016

Energy Harvesting Using Photovoltaic And Betavoltaic Devices, Ashish Sharma

Doctoral Dissertations

There is an important need for improvement in both cost and efficiency of photovoltaic cells. For improved efficiency, a better understanding of solar cell performance is required. An analytical model of thin-film silicon solar cell, which can provide an intuitive understanding of the effect of illumination on its charge carriers and electric current, is proposed. The separate cases of homogeneous and inhomogeneous charge carrier generation rates across the device are investigated. This model also provides for the study of the charge carrier transport within the quasi-neutral and depletion regions of the device, which is of an importance for thin-film solar ...


Epitaxial Growth Of Si-Ge-Sn Alloys For Optoelectronic Device Application, Aboozar Mosleh Dec 2015

Epitaxial Growth Of Si-Ge-Sn Alloys For Optoelectronic Device Application, Aboozar Mosleh

Theses and Dissertations

Microelectronics industry has experienced a tremendous change over the last few decades and has shown that Moore’s law has been followed by doubling the number of transistors on the chip every 18 months. However, continuous scaling down of the transistors size is reaching the physical limits and data transfer through metal interconnects will not be able to catch up with the increasing data processing speed in the future. Therefore, optical data transfer between chips and on-chip has been widely investigated. Silicon based optoelectronics has received phenomenal attention since Si has been the core material on which microelectronic industry has ...


Fabrication Of Sub-10 Nm Metallic Structures Via Nanomasking Technique For Plasmonic Enhancement Applications, Stephen Joseph Bauman Jul 2015

Fabrication Of Sub-10 Nm Metallic Structures Via Nanomasking Technique For Plasmonic Enhancement Applications, Stephen Joseph Bauman

Theses and Dissertations

One area of nanoscience that has become popular in recent years is the study of optics at the nanoscale. Due to enhanced fabrication techniques, new geometries and improved dimensional resolutions have been allowing the creation of nanostructures for use in this area. Nanoscale geometries cause unique optical effects such as enhancement of the signal’s electric field strength at the surface of a substrate. Specifically, structures separated by nanogaps (10 nm and smaller) have been shown to exhibit strong field enhancement within the gaps. This has opened up the potential for surface enhanced spectroscopies, enhanced absorption for photovoltaics, and improved ...


Broadband High Efficiency Fractal-Like And Diverse Geometry Silicon Nanowire Arrays For Photovoltaic Applications, Omar Hassan Al-Zoubi Jul 2015

Broadband High Efficiency Fractal-Like And Diverse Geometry Silicon Nanowire Arrays For Photovoltaic Applications, Omar Hassan Al-Zoubi

Theses and Dissertations

Solar energy has many advantages over conventional sources of energy. It is abundant, clean and sustainable. One way to convert solar energy directly into electrical energy is by using the photovoltaic solar cells (PVSC). Despite PVSC are becoming economically competitive, they still have high cost and low light to electricity conversion efficiency. Therefore, increasing the efficiency and reducing the cost are key elements for producing economically more competitive PVSC that would have significant impact on energy market and saving environment. A significant percentage of the PVSC cost is due to the materials cost. For that, thin films PVSC have been ...


Large-Scale Graphene Film Deposition For Monolithic Device Fabrication, Khaled Al-Shurman May 2015

Large-Scale Graphene Film Deposition For Monolithic Device Fabrication, Khaled Al-Shurman

Theses and Dissertations

Since 1958, the concept of integrated circuit (IC) has achieved great technological developments and helped in shrinking electronic devices. Nowadays, an IC consists of more than a million of compacted transistors.

The majority of current ICs use silicon as a semiconductor material. According to Moore's law, the number of transistors built-in on a microchip can be double every two years. However, silicon device manufacturing reaches its physical limits. To explain, there is a new trend to shrinking circuitry to seven nanometers where a lot of unknown quantum effects such as tunneling effect can not be controlled. Hence, there is ...


Quartz-Mems: Wet Chemical Etching Assisted By Electromagnetic Energy Sources For The Development Of Quartz Crystal To Be Used For Microelectromechanical Systems, William J. Clower Oct 2014

Quartz-Mems: Wet Chemical Etching Assisted By Electromagnetic Energy Sources For The Development Of Quartz Crystal To Be Used For Microelectromechanical Systems, William J. Clower

Doctoral Dissertations

Quartz crystal resonators have been the most commonly used timing devices to date. Today's timing market requires devices to be as small as possible and consume smaller amounts of energy. Because of the market demand, many startup companies have formed to develop silicon resonators as timing devices. Silicon resonators have poor noise and temperature performance (due to its linear temperature versus frequency coefficient). At the moment the only advantage that silicon resonators have over quartz crystal resonators is a small form factor. The photolithography processing method currently being used in industry is a very tedious task, requiring multiple etching ...


Zinc Oxide Nanorod Based Ultraviolet Detectors With Wheatstone Bridge Design, Arun Vasudevan Dec 2013

Zinc Oxide Nanorod Based Ultraviolet Detectors With Wheatstone Bridge Design, Arun Vasudevan

Theses and Dissertations

This research work, for the first time, investigated metal semiconductor-metal (MSM) zine oxide (ZnO) nanorod based ultra-violet (UV) detectors having a Wheatstone bridge design with a high

responsivity at room temperature and above, as well as a responsivity that was largely independent of the change in ambient conditions. The ZnO nanorods which acted as the sensing element of the detector were grown by a chemical growth technique. Studies were conducted to determine the effects on ZnO nanorod properties by varying the concentration of the chemicals used for the rod growth. These studies showed how the rod diameter and the deposition ...


Non-Silicon Mosfets And Circuits With Atomic Layer Deposited Higher-K Dielectrics, Lin Dong Oct 2013

Non-Silicon Mosfets And Circuits With Atomic Layer Deposited Higher-K Dielectrics, Lin Dong

Open Access Dissertations

The quest for technologies beyond 14nm node complementary metal-oxide-semiconductor (CMOS) devices has now called for research on higher-k gate dielectrics integration with high mobility channel materials such as III-V semiconductors and germanium. Ternary oxides, such as La2-xYxO3 and LaAlO3, have been considered as strong candidates due to their high dielectric constants and good thermal stability. Meanwhile, the unique abilities of delivering large area uniform thin film, excellent controlling of composition and thickness to an atomic level, which are keys to ultra-scaled devices, have made atomic layer deposition (ALD) technique an excellent choice.

In this thesis, we systematically study the atomic ...


Plasmonic Nanostructures For The Absorption Enhancement Of Silicon Solar Cells, Nathan Matthias Burford May 2013

Plasmonic Nanostructures For The Absorption Enhancement Of Silicon Solar Cells, Nathan Matthias Burford

Theses and Dissertations

In this work, computational investigation of plasmonic nanostructures was conducted using the commercial finite element electromagnetics solver Ansys® HFSS. Arrays of silver toroid nanoparticles located on the surface of an amorphous silicon thin-film absorbing layer were studied for particle sizes ranging from 20 nm to 200 nm in outer diameter. Parametric optimization by calculating an approximation of the photocurrent enhancement due to the nanoparticles was performed to determine optimal surface coverage of the nanoparticles. A comparison was made between these optimized nanotoroid arrays and optimized nanosphere arrays based on spectral absorption enhancement and potential photocurrent enhancement in an amorphous silicon ...


The Geometry And Sensitivity Of Ion-Beam Sculpted Nanopores For Single Molecule Dna Analysis, Ryan Connor Rollings May 2013

The Geometry And Sensitivity Of Ion-Beam Sculpted Nanopores For Single Molecule Dna Analysis, Ryan Connor Rollings

Theses and Dissertations

In this dissertation, the relationship between the geometry of ion-beam sculpted solid-state nanopores and their ability to analyze single DNA molecules using resistive pulse sensing is investigated. To accomplish this, the three dimensional shape of the nanopore is determined using energy filtered and tomographic transmission electron microscopy. It is shown that this information enables the prediction of the ionic current passing through a voltage biased nanopore and improves the prediction of the magnitude of current drop signals when the nanopore interacts with single DNA molecules. The dimensional stability of nanopores in solution is monitored using this information and is improved ...


Design And Fabrication Of Nanofluidic Systems With Integrated Sensing Electrodes For Rapid Biomolecule Characterization, Taylor Bradley Busch May 2013

Design And Fabrication Of Nanofluidic Systems With Integrated Sensing Electrodes For Rapid Biomolecule Characterization, Taylor Bradley Busch

Theses and Dissertations

A transparent nanofluidic system with embedded sensing electrodes was designed and fabricated by integrating Atomic Force Microscopy (AFM) nanolithography, Focused Ion Beam (FIB) milling and metal deposition, and standard microfabrication processing. The fabrication process started with the evaporation of chrome/gold (Cr/Au) onto a Pyrex 7740 wafer followed by photolithography and wet etching of the microchannels. The wafer was patterned a second time to form Au microelectrodes with 15-45 micrometer separation gaps in the nanochannel region. Sensing electrodes (up to one micron wide) were then deposited using FIB to bridge the gaps. The nanochannels were realized through both AFM ...


New Effects Of Aging And Lattice Intercalation On Surface Properties Of Titanate Nanobelts, Roger Williams May 2013

New Effects Of Aging And Lattice Intercalation On Surface Properties Of Titanate Nanobelts, Roger Williams

Theses and Dissertations

Titanate nanobelts (NBs) have structural characteristics beyond that of clays. Due to a negatively charged lattice matrix of edge-shared TiO6-octahedra, the location of intercalated cations within the interlayer space may dictate the charge-conductions. This environment may in turn govern the lattice-framework's stability and surface properties, based upon our preliminary

data.

On that basis, these nanomaterials have been found in our lab to possess superb biological compatibility that is closely related to the types of the intercalated cations. In addition, a prolonged agitation was proven to enable us to manipulate the titanate NBs' length. In a parallel study, a ripening ...


Synthesis And Characterization Of Iron Pyrite Nanocrystals For Photovoltaic Devices, Scott Curtis Mangham May 2013

Synthesis And Characterization Of Iron Pyrite Nanocrystals For Photovoltaic Devices, Scott Curtis Mangham

Theses and Dissertations

Iron pyrite nanocrystals have been synthesized using a hot-injection method with a variety of amines and characterized with properties necessary for photovoltaic devices. The iron pyrite nanocrystals were characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, optical absorption, micro-Raman, and micro-Photoluminescence. The optical absorbance spectra showed the large absorption in the visible and near infrared spectral range for the nanocrystals as well as to show the band gap. The face-centered cubic crystal structure of the iron pyrite nanocrystals was shown by matching the measured X-ray diffraction pattern to a face-centered cubic iron pyrite reference pattern. Using Bragg's ...


Orientation Controllable Epitaxial Vapor-Liquid-Solid Semiconductor Nanowire Synthesis On Silicon Substrate, Sung Hwan Chung Jan 2013

Orientation Controllable Epitaxial Vapor-Liquid-Solid Semiconductor Nanowire Synthesis On Silicon Substrate, Sung Hwan Chung

Open Access Dissertations

Semiconductor nanowires synthesized via the vapor-liquid-solid (VLS) mechanism have attracted extensive research interest in recent years owing to their unique structure as a promising candidate for the future electronic devices. Germanium and silicon nanowires, in particular, are compatible with the current silicon-based technology via direct assembly. However, one of the main challenges for the successful nanowire application in large-scale is the lack of the method for obtaining nanowires in desired positions and directions. Therefore, the comprehensive, systematic understanding of epitaxial nanowire growth and the more suitable method to align nanowires on novel structure are required. In this work, the synthesis ...


Quantum Computing With Steady State Spin Currents, Brian Matthew Sutton Jan 2013

Quantum Computing With Steady State Spin Currents, Brian Matthew Sutton

Open Access Theses

Many approaches to quantum computing use spatially confined qubits in the presence of dynamic fields to perform computation. These approaches are contrasted with proposals using mobile qubits in the presence of static fields. In this thesis, steady state quantum computing using mobile electrons is explored using numerical modeling. Firstly, a foundational introduction to the case of spatially confined qubits embodied via quantum dots is provided. A collection of universal gates implemented with dynamic fields is described using simulations. These gates are combined to implement a five-qubit Grover search to provide further insight on the time-dependent field approach. Secondly, the quantum ...


Fabrication And Characterization Of Thinner Solid-State Nanopores, Denis Forbi Tita Aug 2012

Fabrication And Characterization Of Thinner Solid-State Nanopores, Denis Forbi Tita

Theses and Dissertations

Solid State nanopores that are fabricated by the ion beam sculpting process and electron beam drilling have shown great promise as a sensing device for DNA and protein molecules. Even though biological pores such as the alpha-Haemolysin have been in use for quite some time, the use of solid state Nanopores in single biomolecule detection has been on the rise since the mid 1990s. Solid State nanopores have an advantage over biological pores in that they are more robust, stable, and can be sculpted to any desired size for use in translocation experiments. One of the major challenges in Nanopore ...


Use Of Ultra High Vacuum Plasma Enhanced Chemical Vapor Deposition For Graphene Fabrication, Shannen Adcock May 2012

Use Of Ultra High Vacuum Plasma Enhanced Chemical Vapor Deposition For Graphene Fabrication, Shannen Adcock

Theses and Dissertations

Graphene, what some are terming the "new silicon", has the possibility of revolutionizing technology through nanoscale design processes. Fabrication of graphene for device processing is limited largely by the temperatures used in conventional deposition. High temperatures are detrimental to device design where many different materials may be present. For this reason, graphene synthesis at low temperatures using plasma-enhanced chemical vapor deposition is the subject of much research. In this thesis, a tool for ultra-high vacuum plasma-enhanced chemical vapor deposition (UHV-PECVD) and accompanying subsystems, such as control systems and alarms, are designed and implemented to be used in future graphene growths ...


Molecular Dynamics Study Of Diffusion Of O2 Penetrates In Uncrosslinked Polydimethysiloxane (Pdms), Crosslinked Pdms, And Pdms-Based Nanocomposites, Varun Ullal May 2012

Molecular Dynamics Study Of Diffusion Of O2 Penetrates In Uncrosslinked Polydimethysiloxane (Pdms), Crosslinked Pdms, And Pdms-Based Nanocomposites, Varun Ullal

Theses and Dissertations

Molecular dynamics simulations are used to study diffusion of O2 molecules in pure polydimethysiloxane (PDMS), crosslinked PDMS, and PDMS-based nanocomposites. The PDMS chains and penetrates are modeled using a hybrid interatomic potential which treats the Si-O atoms along the chain backbone explicitly while coarse-graining the methyl side groups and penetrates. By tracking the diffusion of penetrates in the system and subsequently computing their mean-squared displacement, diffusion coefficients are obtained. In pure PDMS models of varying molecular weight, diffusivity of the O22 penetrates is found to have an inverse relationship with chain length. Simulation models with longer chains ...


Experimental Study Of Novel Materials And Module For Cryogenic (4k) Superconducting Multi-Chip Modules, Ranjith John May 2012

Experimental Study Of Novel Materials And Module For Cryogenic (4k) Superconducting Multi-Chip Modules, Ranjith John

Theses and Dissertations

The objectives of this proposal are to understand the science and technology of interfaces in the packaging of superconducting electronic (SCE) multichip modules (MCMs) at 4 K. The thermal management issue of the current SCE-MCMs was examined and the package assembly was optimized. A novel thermally conducting and electrically insulating nano-engineered polymer was developed for the thermal management of SCE-MCMs for 4 K cryogenic packaging. Finally, the nano-engineered polymer was integrated as underfill in a SCE-MCM and the thermal and electrical performance of SCE-MCM was demonstrated at 4 K.

Niobium based superconducting electronics (SCE) are the fastest known digital logic ...


High Frequency Characterization Of Carbon Nanotube Networks For Device Applications, Emmanuel Decrossas May 2012

High Frequency Characterization Of Carbon Nanotube Networks For Device Applications, Emmanuel Decrossas

Theses and Dissertations

This work includes the microwave characterization of carbon nanotubes (CNTs) to design new CNTs-based high frequency components. A novel developed method to extract the electrical properties over a broad microwave frequency band from 10 MHz to 50 GHz of carbon nanotubes (CNTs) in a powder form is performed. The measured scattering parameters (S-parameters) with a performance network analyzer are compared to the simulated one obtained from an in-house computed mode matching technique (MMT). An optimized first order gradient method iteratively changes the unknown complex permittivity parameters to map the simulated S-parameters with the measured one until convergence criteria are satisfied ...