Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

PDF

Electrical and Computer Engineering

Applied sciences

2012

Articles 1 - 5 of 5

Full-Text Articles in Nanoscience and Nanotechnology

Fabrication And Characterization Of Thinner Solid-State Nanopores, Denis Forbi Tita Aug 2012

Fabrication And Characterization Of Thinner Solid-State Nanopores, Denis Forbi Tita

Theses and Dissertations

Solid State nanopores that are fabricated by the ion beam sculpting process and electron beam drilling have shown great promise as a sensing device for DNA and protein molecules. Even though biological pores such as the alpha-Haemolysin have been in use for quite some time, the use of solid state Nanopores in single biomolecule detection has been on the rise since the mid 1990s. Solid State nanopores have an advantage over biological pores in that they are more robust, stable, and can be sculpted to any desired size for use in translocation experiments. One of the major challenges in Nanopore ...


Molecular Dynamics Study Of Diffusion Of O2 Penetrates In Uncrosslinked Polydimethysiloxane (Pdms), Crosslinked Pdms, And Pdms-Based Nanocomposites, Varun Ullal May 2012

Molecular Dynamics Study Of Diffusion Of O2 Penetrates In Uncrosslinked Polydimethysiloxane (Pdms), Crosslinked Pdms, And Pdms-Based Nanocomposites, Varun Ullal

Theses and Dissertations

Molecular dynamics simulations are used to study diffusion of O2 molecules in pure polydimethysiloxane (PDMS), crosslinked PDMS, and PDMS-based nanocomposites. The PDMS chains and penetrates are modeled using a hybrid interatomic potential which treats the Si-O atoms along the chain backbone explicitly while coarse-graining the methyl side groups and penetrates. By tracking the diffusion of penetrates in the system and subsequently computing their mean-squared displacement, diffusion coefficients are obtained. In pure PDMS models of varying molecular weight, diffusivity of the O22 penetrates is found to have an inverse relationship with chain length. Simulation models with longer chains ...


High Frequency Characterization Of Carbon Nanotube Networks For Device Applications, Emmanuel Decrossas May 2012

High Frequency Characterization Of Carbon Nanotube Networks For Device Applications, Emmanuel Decrossas

Theses and Dissertations

This work includes the microwave characterization of carbon nanotubes (CNTs) to design new CNTs-based high frequency components. A novel developed method to extract the electrical properties over a broad microwave frequency band from 10 MHz to 50 GHz of carbon nanotubes (CNTs) in a powder form is performed. The measured scattering parameters (S-parameters) with a performance network analyzer are compared to the simulated one obtained from an in-house computed mode matching technique (MMT). An optimized first order gradient method iteratively changes the unknown complex permittivity parameters to map the simulated S-parameters with the measured one until convergence criteria are satisfied ...


Experimental Study Of Novel Materials And Module For Cryogenic (4k) Superconducting Multi-Chip Modules, Ranjith John May 2012

Experimental Study Of Novel Materials And Module For Cryogenic (4k) Superconducting Multi-Chip Modules, Ranjith John

Theses and Dissertations

The objectives of this proposal are to understand the science and technology of interfaces in the packaging of superconducting electronic (SCE) multichip modules (MCMs) at 4 K. The thermal management issue of the current SCE-MCMs was examined and the package assembly was optimized. A novel thermally conducting and electrically insulating nano-engineered polymer was developed for the thermal management of SCE-MCMs for 4 K cryogenic packaging. Finally, the nano-engineered polymer was integrated as underfill in a SCE-MCM and the thermal and electrical performance of SCE-MCM was demonstrated at 4 K.

Niobium based superconducting electronics (SCE) are the fastest known digital logic ...


Use Of Ultra High Vacuum Plasma Enhanced Chemical Vapor Deposition For Graphene Fabrication, Shannen Adcock May 2012

Use Of Ultra High Vacuum Plasma Enhanced Chemical Vapor Deposition For Graphene Fabrication, Shannen Adcock

Theses and Dissertations

Graphene, what some are terming the "new silicon", has the possibility of revolutionizing technology through nanoscale design processes. Fabrication of graphene for device processing is limited largely by the temperatures used in conventional deposition. High temperatures are detrimental to device design where many different materials may be present. For this reason, graphene synthesis at low temperatures using plasma-enhanced chemical vapor deposition is the subject of much research. In this thesis, a tool for ultra-high vacuum plasma-enhanced chemical vapor deposition (UHV-PECVD) and accompanying subsystems, such as control systems and alarms, are designed and implemented to be used in future graphene growths ...