Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

PDF

Electrical and Computer Engineering

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 143

Full-Text Articles in Nanoscience and Nanotechnology

Highly Transmissive Scalable Colored Coatings For Architectural Photovoltaic Panels, Akbar Ali Syed Apr 2020

Highly Transmissive Scalable Colored Coatings For Architectural Photovoltaic Panels, Akbar Ali Syed

Electrical & Computer Engineering Theses & Disssertations

Highly transmissive coatings were developed by fabricating thin films using SiO2 and SiO2/TiO2 core/shell nanoparticles on glass substrates and on the photovoltaic cell glass covers. This coating is to maintain an attractive color appearance of the exterior surface for architecturally integrated photovoltaics and can be coated on fabricated photovoltaic panels. The color and optical properties of the nanoparticle coating was investigated for different nanoparticle diameters of 200-400 nm for SiO2 nanoparticles and core/shell nanoparticles having SiO2/TiO2 structure with 300 ± 11 nm diameter, and SiO2/TiO2/SiO2 structure ...


Electric Field Control Of Fixed Magnetic Skyrmions For Energy Efficient Nanomagnetic Memory, Dhritiman Bhattacharya Jan 2020

Electric Field Control Of Fixed Magnetic Skyrmions For Energy Efficient Nanomagnetic Memory, Dhritiman Bhattacharya

Theses and Dissertations

To meet the ever-growing demand of faster and smaller computers, increasing number of transistors are needed in the same chip area. Unfortunately, Silicon based transistors have almost reached their miniaturization limits mainly due to excessive heat generation. Nanomagnetic devices are one of the most promising alternatives of CMOS. In nanomagnetic devices, electron spin, instead of charge, is the information carrier. Hence, these devices are non-volatile: information can be stored in these devices without needing any external power which could enable computing architectures beyond traditional von-Neumann computing. Additionally, these devices are also expected to be more energy efficient than CMOS devices ...


Fabrication, Development, And Characterization Of Hipco Swcnt - Alginate Hydrogel Composites For Cellular Product Applications, Fabian Armando Alvarez-Primo Jan 2020

Fabrication, Development, And Characterization Of Hipco Swcnt - Alginate Hydrogel Composites For Cellular Product Applications, Fabian Armando Alvarez-Primo

Open Access Theses & Dissertations

In this study, we designed, synthesized, and characterized ultrahigh purity single-walled carbon nanotube (SWCNT)-alginate hydrogel composites. Among the parameters of importance in the formation of an alginate-based hydrogel composite with single-walled carbon nanotubes, are their varying degrees of purity, their particulate agglomeration and their dose-dependent correlation to cell viability, all of which have an impact on the resultant compositeâ??s efficiency and effectiveness towards biomedical applications. To promote their homogenous dispersion by preventing agglomeration of the SWCNT, at first, we used three different surfactants-sodium dodecyl sulfate (SDS-anionic), cetyltrimethylammonium bromide (CTAB-cationic), and Pluronic F108 (nonionic). After experimentation and corroboration through ...


Optical Angular Scatterometry: In-Line Approach For Roll-2-Roll And Nano-Imprint Fabrication Systems, Juan Jose Faria-Briceno Nov 2019

Optical Angular Scatterometry: In-Line Approach For Roll-2-Roll And Nano-Imprint Fabrication Systems, Juan Jose Faria-Briceno

Electrical and Computer Engineering ETDs

As critical dimensions continue to shrink and structures become more complex, metrology processes are challenging to implement during in-line nanomanufacturing. Non-destructive, non-contact, and high-speed conditions are required to achieve proper metrology processes during in-line manufacturing. Optical scatterometry is a nanoscale metrology tool widely used in integrated circuit manufacturing for characterization and quality control. However, most applications of optical scatterometry operate off-line. A high-speed, in-line, non-contact, non-destructive scatterometry angular system has been demonstrated in this work to scan pattern surfaces during real-time nano-fabrication.

Our system has demonstrated scanning capabilities using flat, 1D and 2D complex structures. The flat surface samples consist ...


Function And Dissipation In Finite State Automata - From Computing To Intelligence And Back, Natesh Ganesh Oct 2019

Function And Dissipation In Finite State Automata - From Computing To Intelligence And Back, Natesh Ganesh

Doctoral Dissertations

Society has benefited from the technological revolution and the tremendous growth in computing powered by Moore's law. However, we are fast approaching the ultimate physical limits in terms of both device sizes and the associated energy dissipation. It is important to characterize these limits in a physically grounded and implementation-agnostic manner, in order to capture the fundamental energy dissipation costs associated with performing computing operations with classical information in nano-scale quantum systems. It is also necessary to identify and understand the effect of quantum in-distinguishability, noise, and device variability on these dissipation limits. Identifying these parameters is crucial to ...


A Multicarrier Technique For Monte Carlo Simulation Of Electrothermal Transport In Nanoelectronics, Tyler J. Spence Oct 2019

A Multicarrier Technique For Monte Carlo Simulation Of Electrothermal Transport In Nanoelectronics, Tyler J. Spence

Doctoral Dissertations

The field of microelectronics plays an important role in many areas of engineering and science, being ubiquitous in aerospace, industrial manufacturing, biotechnology, and many other fields. Today, many micro- and nanoscale electronic devices are integrated into one package. e capacity to simulate new devices accurately is critical to the engineering design process, as device engineers use simulations to predict performance characteristics and identify potential issues before fabrication. A problem of particular interest is the simulation of devices which exhibit exotic behaviors due to non-equilibrium thermodynamics and thermal effects such as self-heating. Frequently, it is desirable to predict the level of ...


Laser-Spark Multicharged Ion Implantation System ‒ Application In Ion Implantation And Neural Deposition Of Carbon In Nickel (111), Oguzhan Balki Oct 2019

Laser-Spark Multicharged Ion Implantation System ‒ Application In Ion Implantation And Neural Deposition Of Carbon In Nickel (111), Oguzhan Balki

Electrical & Computer Engineering Theses & Disssertations

Carbon ions generated by ablation of a carbon target using an Nd:YAG laser pulse (wavelength λ = 1064 nm, pulse width τ = 7 ns, and laser fluence of 10-110 J/cm2) are characterized. Time-of-flight analyzer, a three-mesh retarding field analyzer, and an electrostatic ion energy analyzer are used to study the charge and energy of carbon ions generated by laser ablation. The dependencies of the ion signal on the laser fluence, laser focal point position relative to target surface, and the acceleration voltage are described. Up to C4+ are observed. When no acceleration voltage is applied between the ...


Surface Engineering Solutions For Immersion Phase Change Cooling Of Electronics, Brendon M. Doran May 2019

Surface Engineering Solutions For Immersion Phase Change Cooling Of Electronics, Brendon M. Doran

Master's Theses

Micro- and nano-scale surface modifications have been a subject of great interest for enhancing the pool boiling heat transfer performance of immersion cooling systems due to their ability to augment surface area, improve wickability, and increase nucleation site density. However, many of the surface modification technologies that have been previously demonstrated show a lack of evidence concerning scalability for use at an industrial level. In this work, the pool boiling heat transfer performance of nanoporous anodic aluminum oxide (AAO) films, copper oxide (CuO) nanostructure coatings, and 1D roll-molded microfin arrays has been studied. Each of these technologies possess scalability in ...


Experimental And Computational Study On Magnetic Nanowires Of Layered Titanates, Caleb Layne Heath May 2019

Experimental And Computational Study On Magnetic Nanowires Of Layered Titanates, Caleb Layne Heath

Theses and Dissertations

The intricate nanostructures of layered titanates are unique among nanomaterials due to their easy and inexpensive syntheses. These nanomaterials have been proven valuable for use in industries as varied as energy, water treatment, and healthcare, and can be produced at industrial scales using already existent equipment. They have complex morphology, and surface structure well suited to chemical modification and doping. However, there is a longstanding debate on their lattice structure after the doping. There is a long-unmet need to understand, using both experimental and simulation methods, how dopants alter the clay-like layered crystal structure and associated physical and chemical properties ...


Plasmonic Properties Of Nanoparticle And Two Dimensional Material Integrated Structure, Desalegn Tadesse Debu May 2019

Plasmonic Properties Of Nanoparticle And Two Dimensional Material Integrated Structure, Desalegn Tadesse Debu

Theses and Dissertations

Recently, various groups have demonstrated nano-scale engineering of nanostructures for optical to infrared wavelength plasmonic applications. Most fabrication technique processes, especially those using noble metals, requires an adhesion layer. Previously proposed theoretical work to support experimental measurement often neglect the effect of the adhesion layers. The first finding of this work focuses on the impact of the adhesion layer on nanoparticle plasmonic properties. Gold nanodisks with a titanium adhesion layer are investigated by calculating the scattering, absorption, and extinction cross-section with numerical simulations using a finite difference time domain (FDTD) method. I demonstrate that a gold nanodisk with an adhesive ...


Vision Beyond Optics: Standardization, Evaluation And Innovation For Fluorescence Microscopy In Life Sciences, Maximiliaan Huisman Apr 2019

Vision Beyond Optics: Standardization, Evaluation And Innovation For Fluorescence Microscopy In Life Sciences, Maximiliaan Huisman

GSBS Dissertations and Theses

Fluorescence microscopy is an essential tool in biomedical sciences that allows specific molecules to be visualized in the complex and crowded environment of cells. The continuous introduction of new imaging techniques makes microscopes more powerful and versatile, but there is more than meets the eye. In addition to develop- ing new methods, we can work towards getting the most out of existing data and technologies. By harnessing unused potential, this work aims to increase the richness, reliability, and power of fluorescence microscopy data in three key ways: through standardization, evaluation and innovation.

A universal standard makes it easier to assess ...


Fabrication And Characterization Of Nanofiber Nylon-6-Mwcnt As An Electrochemical Sensor For Sodium Ions Concentration Detection In Sweat, Kelsey Mills Jan 2019

Fabrication And Characterization Of Nanofiber Nylon-6-Mwcnt As An Electrochemical Sensor For Sodium Ions Concentration Detection In Sweat, Kelsey Mills

Williams Honors College, Honors Research Projects

Fabrication and characterization nylon-6-MWCNT nanofiber as an electrochemical sensor to detect sodium ion concentrations specifically in sweat. Using contact angle to determine surface morphology and chronoamperometry testing to identify ideal sensor conditions, tests optimized parameters like weight percent of nylon or other polymers, carbon nanotube (CNT) isomer, and solution concentration to determine reproducibility of functional sensors. Utilizing the electric qualities of carbon nanotubes partnered with the sodium ion selectivity of calixarene treatment and polymers unique properties like flexibility and scalability create open an arena for optimizing sodium ion sensors for further development for functional prototypes. Morphology tests showed that the ...


Straintronic Nanomagnetic Devices For Non-Boolean Computing, Md Ahsanul Abeed Jan 2019

Straintronic Nanomagnetic Devices For Non-Boolean Computing, Md Ahsanul Abeed

Theses and Dissertations

Nanomagnetic devices have been projected as an alternative to transistor-based switching devices due to their non-volatility and potentially superior energy-efficiency. The energy efficiency is enhanced by the use of straintronics which involves the application of a voltage to a piezoelectric layer to generate a strain which is ultimately transferred to an elastically coupled magnetostrictive nanomaget, causing magnetization rotation. The low energy dissipation and non-volatility characteristics make straintronic nanomagnets very attractive for both Boolean and non-Boolean computing applications. There was relatively little research on straintronic switching in devices built with real nanomagnets that invariably have defects and imperfections, or their adaptation ...


Resonant Acoustic Wave Assisted Spin-Transfer-Torque Switching Of Nanomagnets, Austin R. Roe Jan 2019

Resonant Acoustic Wave Assisted Spin-Transfer-Torque Switching Of Nanomagnets, Austin R. Roe

Theses and Dissertations

We studied the possibility of achieving an order of magnitude reduction in the energy dissipation needed to write bits in perpendicular magnetic tunnel junctions (p-MTJs) by simulating the magnetization dynamics under a combination of resonant surface acoustic waves (r-SAW) and spin-transfer-torque (STT). The magnetization dynamics were simulated using the Landau-Lifshitz-Gilbert equation under macrospin assumption with the inclusion of thermal noise. We studied such r-SAW assisted STT switching of nanomagnets for both in-plane elliptical and circular perpendicular magnetic anisotropy (PMA) nanomagnets and show that while thermal noise affects switching probability in in-plane nanomagnets, the PMA nanomagnets are relatively robust to the ...


Engineering Plasmonic Nanostructures For Light Management And Sensing, Sujan Phani Kumar Kasani Jan 2019

Engineering Plasmonic Nanostructures For Light Management And Sensing, Sujan Phani Kumar Kasani

Graduate Theses, Dissertations, and Problem Reports

The two major global problems are to provide health safety and to meet energy demands for ever growing population on a large scale. The study of light interaction with nanostructures has shown a promising solution in improving the fields of bio-sensor and solar energy devices which addresses above mentioned two major global problems. Nanostructures have tunable physicochemical properties such as light absorption, electrical and thermal properties unlike bulk materials, which gives an advantage in applications like bio-sensing and energy harvesting devices. The development of nanofabrication techniques along with the discovery of Surface Enhanced Raman Scattering (SERS) and Plasmon Enhanced Fluorescence ...


Optimizing The Plasmonic Enhancement Of Light In Metallic Nanogap Structures For Surface-Enhanced Raman Spectroscopy, Stephen Joseph Bauman Dec 2018

Optimizing The Plasmonic Enhancement Of Light In Metallic Nanogap Structures For Surface-Enhanced Raman Spectroscopy, Stephen Joseph Bauman

Theses and Dissertations

Technology based on the interaction between light and matter has entered something of a renaissance over the past few decades due to improved control over the creation of nanoscale patterns. Tunable nanofabrication has benefitted optical sensing, by which light is used to detect the presence or quantity of various substances. Through methods such as Raman spectroscopy, the optical spectra of solid, liquid, or gaseous samples act as fingerprints which help identify a single type of molecule amongst a background of potentially many other chemicals. This technique therefore offers great benefit to applications such as biomedical sensors, airport security, industrial waste ...


Gesn Thin Film Epitaxy And Quantum Wells For Optoelectronic Devices, Perry Christian Grant Dec 2018

Gesn Thin Film Epitaxy And Quantum Wells For Optoelectronic Devices, Perry Christian Grant

Theses and Dissertations

Group IV photonics is an effort to generate viable infrared optoelectronic devices using group IV materials. Si-based optoelectronics have received monumental research since Si is the heart of the electronics industry propelling our data driven world. Silicon however, is an indirect material whose optical characteristics are poor compared to other III-IV semiconductors that make up the optoelectronics industry. There have been major efforts to integrate III-V materials onto Si substrates. Great progress on the integration of these III-V materials has occurred but incompatibility with CMOS processing has presented great difficulty in this process becoming a viable and cost-effective solution. Germanium ...


Exploration Of Radiation Damage Mechanism In Mems Devices., Pranoy Deb Shuvra Dec 2018

Exploration Of Radiation Damage Mechanism In Mems Devices., Pranoy Deb Shuvra

Electronic Theses and Dissertations

We explored UV, X-ray and proton radiation damage mechanisms in MEMS resonators. T-shaped MEMS resonators of different dimensions were used to investigate the effect of radiation. Radiation damage is observed in the form of resistance and resonance frequency shift of the device. The resistance change indicates a change in free carrier concentration and mobility, while the resonance frequency change indicates a change in mass and/or elastic constant. For 255nm UV radiation, we observed a persistent photoconductivity that lasts for about 60 hours after radiation is turned off. The resonance frequency also decreases 40-90 ppm during irradiation and slowly recovers ...


Physical Electronic Properties Of Self-Assembled 2d And 3d Surface Mounted Metal-Organic Frameworks, Radwan Elzein Nov 2018

Physical Electronic Properties Of Self-Assembled 2d And 3d Surface Mounted Metal-Organic Frameworks, Radwan Elzein

Graduate Theses and Dissertations

Metal-organic frameworks stand at the frontiers of molecular electronic research because they combine desirable physical properties of organic and inorganic components. They are crystalline porous solids constructed by inorganic nodes coordinated to organic ligands to form 1D, 2D, or 3D structures. They possess unique characteristics such as ultrahigh surface area crystal lattices up to 10000 m2 g-1, and tunable nanoporous sizes ranging from 0.2 to 50 nm. Their unprecedented structural diversity and flexibility beyond solid state materials can lead to unique properties such as tailorable electronic and ionic conductivity which can serve as interesting platforms for a ...


Parallel Algorithms For Time Dependent Density Functional Theory In Real-Space And Real-Time, James Kestyn Oct 2018

Parallel Algorithms For Time Dependent Density Functional Theory In Real-Space And Real-Time, James Kestyn

Doctoral Dissertations

Density functional theory (DFT) and time dependent density functional theory (TDDFT) have had great success solving for ground state and excited states properties of molecules, solids and nanostructures. However, these problems are particularly hard to scale. Both the size of the discrete system and the number of needed eigenstates increase with the number of electrons. A complete parallel framework for DFT and TDDFT calculations applied to molecules and nanostructures is presented in this dissertation. This includes the development of custom numerical algorithms for eigenvalue problems and linear systems. New functionality in the FEAST eigenvalue solver presents an additional level of ...


Opto-Thermal Characterization Of Plasmon And Coupled Lattice Resonances In 2-D Metamaterial Arrays, Vinith Bejugam Aug 2018

Opto-Thermal Characterization Of Plasmon And Coupled Lattice Resonances In 2-D Metamaterial Arrays, Vinith Bejugam

Theses and Dissertations

Growing population and climate change inevitably requires longstanding dependency on sustainable sources of energy that are conducive to ecological balance, economies of scale and reduction of waste heat. Plasmonic-photonic systems are at the forefront of offering a promising path towards efficient light harvesting for enhanced optoelectronics, sensing, and chemical separations. Two-dimensional (2-D) metamaterial arrays of plasmonic nanoparticles arranged in polymer lattices developed herein support thermoplasmonic heating at off-resonances (near infrared, NIR) in addition to regular plasmonic resonances (visible), which extends their applicability compared to random dispersions. Especially, thermal responses of 2-D arrays at coupled lattice resonance (CLR) wavelengths were comparable ...


Voltage-Controlled Deposition Of Nanoparticles For Next Generation Electronic Materials, Subhodip Maulik May 2018

Voltage-Controlled Deposition Of Nanoparticles For Next Generation Electronic Materials, Subhodip Maulik

LSU Doctoral Dissertations

This work presents both a feasibility study and an investigation into the voltage-controlled spray deposition of different nanoparticles, namely, carbon nanotubes (CNTs), as well as molybdenum disulfide (MoS2) and tungsten disulfide (WS2) from the transition metal dichalcogenides (TMDCs) family of materials. The study considers five different types of substrates as per their potential application to next-generation device electronics. The substrates selected for this research were: 1) aluminum as a conducting substrate, 2) silicon as a semiconducting substrate, 3) glass, silicon dioxide (SiO2), and syndiotactic poly methyl methacrylate (syndiotactic PMMA) as insulating substrates.

Since the 1990’s, carbon ...


Microwave Acoustic Saw Resonators For Stable High-Temperature Harsh-Environment Static And Dynamic Strain Sensing Applications, Anin K. Maskay May 2018

Microwave Acoustic Saw Resonators For Stable High-Temperature Harsh-Environment Static And Dynamic Strain Sensing Applications, Anin K. Maskay

Electronic Theses and Dissertations

High-temperature, harsh-environment static and dynamic strain sensors are needed for industrial process monitoring and control, fault detection, structural health monitoring in power plant environments, steel and refractory material manufacturing, aerospace, and defense applications. Sensor operation in the aforementioned extreme environments require robust devices capable of sustaining the targeted high temperatures, while maintaining a stable sensor response. Current technologies face challenges regarding device or system size, complexity, operational temperature, or stability.

Surface acoustic wave (SAW) sensor technology using high temperature capable piezoelectric substrates and thin film technology has favorable properties such as robustness; miniature size; capability of mass production; reduced installation ...


Glucose Level Estimation Based On Invasive Electrochemical, And Non-Invasive Optical Sensing Methods, Sanghamitra Mandal May 2018

Glucose Level Estimation Based On Invasive Electrochemical, And Non-Invasive Optical Sensing Methods, Sanghamitra Mandal

Theses and Dissertations

The purpose of this research is to design and fabricate sensors for glucose detection using inexpensive approaches. My first research approach is the fabrication of an amperometric electrochemical glucose sensor, by exploiting the optical properties of semiconductors and structural properties of nanostructures, to enhance the sensor sensitivity and response time. Enzymatic electrochemical sensors are fabricated using two different mechanisms: (1) the low-temperature hydrothermal synthesis of zinc oxide nanorods, and (2) the rapid metal-assisted chemical etching of silicon (Si) to synthesize Si nanowires. The concept of gold nano-electrode ensembles is then employed to the sensors in order to boost the current ...


Design, Fabrication, And Characterization Of All-Inorganic Quantum Dot Light Emitting Diodes, Ramesh Vasan May 2018

Design, Fabrication, And Characterization Of All-Inorganic Quantum Dot Light Emitting Diodes, Ramesh Vasan

Theses and Dissertations

Quantum dot light emitting diodes are investigated as a replacement to the existing organic light emitting diodes that are commonly used for thin film lighting and display applications. In this, all-inorganic quantum dot light emitting diodes with inorganic quantum dot emissive layer and inorganic charge transport layers are designed, fabricated, and characterized. Inorganic materials are more environmentally stable and can handle higher current densities than organic materials. The device consists of CdSe/ZnS alloyed core/shell quantum dots as the emissive layer and metal oxide charge transport layer. The charge transport in these devices is found to occur through resonant ...


Plasmonic Structures For Subwavelength Guiding And Enhanced Light-Matter Interactions, Amirreza Mahigir Apr 2018

Plasmonic Structures For Subwavelength Guiding And Enhanced Light-Matter Interactions, Amirreza Mahigir

LSU Doctoral Dissertations

In this dissertation we design and analyze nanostructures for subwavelength guiding and enhanced light-matter interactions.

We first investigate three-dimensional plasmonic waveguide-cavity structures, built by side-coupling stub resonators that consist of plasmonic coaxial waveguides of finite length, to a plasmonic coaxial waveguide. These structures are capable of guiding and manipulating light in deep-subwavelength volumes. We show that three-dimensional plasmonic coaxial waveguides offer a platform for practical realization of deep-subwavelength optical waveguides.

We then introduce compact wavelength-scale slit-based structures for coupling free space light into the fundamental mode of plasmonic coaxial waveguides. We consider single-, double-, and triple-slit structures optimized at the ...


Two-Dimensional Nanopore And Nanoporous Devices For Molecular Sensing And Ion Selectivity, Gopinath Danda Jan 2018

Two-Dimensional Nanopore And Nanoporous Devices For Molecular Sensing And Ion Selectivity, Gopinath Danda

Publicly Accessible Penn Dissertations

Nanopore-based devices provide the ability to detect, analyze and manipulate molecules by monitoring changes in ionic current and sieving molecules dissolved in an electrolyte. While devices with single nanopores can be used as molecular sensors and analyzers, including as a possible high-throughput DNA sequencer, devices with multiple nanopores (nanoporous devices) can be used to filter out ions from solutions, with possible use in water desalination. Sensitivity and molecular flux can be enhanced by using two-dimensional (2D) materials, like graphene and transition metal dichalcogenides (TMDs), as the nanopore membrane. However, these devices face challenges yet to be solved, including (a) fast ...


Synthesis, Transport, And Thermoelectric Studies Of Topological Dirac Semimetal Cd3as2 For Room Temperature Waste Heat Recovery And Energy Conversion, Tahereh A. Hosseini Dec 2017

Synthesis, Transport, And Thermoelectric Studies Of Topological Dirac Semimetal Cd3as2 For Room Temperature Waste Heat Recovery And Energy Conversion, Tahereh A. Hosseini

Theses and Dissertations

ABSTRACT

SYNTHESIS, TRANSPORT, AND THERMOELECTRIC STUDIES OF TOPOLOGICAL DIRAC SEMIMETAL CD3AS2 FOR ROOM TEMPERATURE WASTE HEAT RECOVERY AND ENERGY CONVERSION

by

The University of Wisconsin-Milwaukee, 2017

Under the Supervision of Professor Nikolai Kouklin

Rising rates of the energy consumption and growing concerns over the climate change worldwide have made energy efficiency an urgent problem to address. Nowadays, almost two-thirds of the energy produced by burning fossil fuels to generate electrical power is lost in the form of the heat. On this front, increasing electrical power generation through a waste heat recovery remains one of the highly promising venues of the ...


Design And Simulation Of A Miniature Cylindrical Mirror Auger Electron Energy Analyzer With Secondary Electron Noise Suppression, Jay A. Bieber Nov 2017

Design And Simulation Of A Miniature Cylindrical Mirror Auger Electron Energy Analyzer With Secondary Electron Noise Suppression, Jay A. Bieber

Graduate Theses and Dissertations

In the nanoscale metrology industry, there is a need for low-cost instruments, which have the ability to probe the structrure and elemental composition of thin films. This dissertation, describes the research performed to design and simulate a miniature Cylindrical Mirror Analyzer, (CMA), and Auger Electron Spectrometer, (AES). The CMA includes an integrated coaxial thermionic electron source. Electron optics simulations were performed using the Finite Element Method, (FEM), software COMSOL. To address the large Secondary Electron, (SE), noise, inherent in AES spectra, this research also included experiments to create structures in materials, which were intended to suppress SE backgound noise in ...


Investigating Scalable Manufacturing Of High-Conductivity Wires And Coatings From Ultra-Long Carbon Nanotubes, Pouria Khanbolouki Nov 2017

Investigating Scalable Manufacturing Of High-Conductivity Wires And Coatings From Ultra-Long Carbon Nanotubes, Pouria Khanbolouki

Mechanical Engineering ETDs

Carbon nanotubes (CNTs) are a promising candidate for next generation of electrical wirings and electromagnetic interference (EMI) shielding materials due to their exceptional mechanical and electrical properties. Wires and coatings from ultralong nanotubes that are highly crystalline, well-aligned and densely packed can achieve this goal. High-performance CNT conductors will be relatively lightweight and resistant to harsh conditions and therefore can potentially replace current conductors in many industries including aerospace, automotive, gas and oil.

This thesis investigates a new manufacturing approach, based on conventional solution coating and wire drawing methods, to fabricate high conductivity wires and coatings from ultra-long carbon nanotubes ...