Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 691 - 720 of 1226

Full-Text Articles in Nanoscience and Nanotechnology

Study Of The Growth And Switching Kinetics On Ferroelectric Nanocrystals Of Copolymer Vinylidene Fluoride And Trifluoroethylene On An Atomic Force Microscope, R. V. Gaynutdinov, O. A. Lysova, A. L. Tolstikhina, V. M. Fridkin, S. G. Yudin, Stephen Ducharme Mar 2013

Study Of The Growth And Switching Kinetics On Ferroelectric Nanocrystals Of Copolymer Vinylidene Fluoride And Trifluoroethylene On An Atomic Force Microscope, R. V. Gaynutdinov, O. A. Lysova, A. L. Tolstikhina, V. M. Fridkin, S. G. Yudin, Stephen Ducharme

Stephen Ducharme Publications

The growth of nanocrystals obtained from Langmuir-Blodgett films of ferroelectric copolymer consisting of 70% vinylidene fluoride and 30% trifluoroethylene has been investigated by atomic force microscopy (AFM). The radius and concentration of nanocrystals are found to depend on the annealing time of the film. A model for nanocrystal growth is proposed which yields adequate time dependences for nanocrystal size parameters. The switching kinetics of individual ferroelectric nanocrystals with an average diameter of 100–200 nm and a height of 15–20 nm has been investigated in the piezoelectric response mode. It is shown that the switching of nanocrystals has an activation character.


Applications Of Ellipsometry In The Investigations Of Electrode-Solution Interface, Jing-Lei Lei, Liang-Liu Wu, Ling-Jie Li, Sheng-Mao Wu, Sheng-Tao Zhang Feb 2013

Applications Of Ellipsometry In The Investigations Of Electrode-Solution Interface, Jing-Lei Lei, Liang-Liu Wu, Ling-Jie Li, Sheng-Mao Wu, Sheng-Tao Zhang

Journal of Electrochemistry

Ellipsometry is an optical technique with high-sensitivity to quantitatively obtain surface/interface properties such as thickness andrefractive index by analyzing the changes in polarized light reflected from the surface/interface. Its noncontacting and nondestructivenature makes it possible to acquire thein situreal-time information of the change at the surface/interface. Therefore, ellipsometry has been used widely in the electrochemical investigations. In this paper, based on the brief introduction of the measurementprinciple of ellipsometry, the current progress and the future trends of ellipsometry in electrochemistry arediscussed. The applications of ellipsometry in the fields of conversion and storage of electrochemical energy, electrochemistry ofmaterials science,electroanalysisand bioelectrochemistry are …


An In Situ Ftir Spectroelectrochemical Study On Methanol Oxidation At Pt-Mo2c/Gc Catalyst, Hai-Ping Huang, Xi-Yu Yao, Pei-Kang Shen Feb 2013

An In Situ Ftir Spectroelectrochemical Study On Methanol Oxidation At Pt-Mo2c/Gc Catalyst, Hai-Ping Huang, Xi-Yu Yao, Pei-Kang Shen

Journal of Electrochemistry

A 40% Pt on Mo2C/GC catalyst has been prepared by ion exchange method. The mechanism of methanol electrooxidation on Pt-Mo2C/GC and commercial Pt/C catalysts in acidic media was studied by cyclic voltammetry, XRD measurements and in-situ Fourier transform infrared spectroelectrochemistry. The results revealed that the Pt nanoparticles were uniformly dispersed on Mo2C/GC with an average particle size of 3 nm. The cyclic voltammetric and chronopotentiometric experiments indicated that Pt-Mo2C/GC catalyst exhibited a better performance for methanol oxidation than that of Pt/C in acid solution. A negative shift over 90 mV of the onset potential for methanol oxidation was found on …


Sodium Carbonate Catalyzed Photoelectrochemical Water Splitting Over Tio2 Nanotubes Photoanode, De-Sheng Kong, Jing Wang, Xue-Di Zhang, Xi Zhao, Chao Wang, Yuan-Yuan Feng, Wen-Juan Li Feb 2013

Sodium Carbonate Catalyzed Photoelectrochemical Water Splitting Over Tio2 Nanotubes Photoanode, De-Sheng Kong, Jing Wang, Xue-Di Zhang, Xi Zhao, Chao Wang, Yuan-Yuan Feng, Wen-Juan Li

Journal of Electrochemistry

Surface recombination of the photogenerated electron-hole pairs at semiconductor/electrolyte interface is one of the most essential reasons responsible for lowering photoconversion efficiency (Φ) of light to chemical energy for photoelectrochemical (PEC) water splitting reaction. In this paper,the catalytic effect of sodium carbonate on the oxygen evolution reaction (OER) over TiO2 nanotubes photoanode during PEC water splitting was investigated by performing photocurrent and ac impedance measurements. It was demonstrated that the addiction of 1 mmol•L-1 Na2CO3 in 0.5 mol•L-1 NaClO4 electrolyte can effectively improve the charge transfer properties for the photogenerated holes …


Combination And Applications Of Time-Resolved Surface Plasmon Resonance Spectroscopy And Electrochemical Methods, Yu Bao, Yan Mao, Wei Wang, Zheng-Gang Li, Li Niu Feb 2013

Combination And Applications Of Time-Resolved Surface Plasmon Resonance Spectroscopy And Electrochemical Methods, Yu Bao, Yan Mao, Wei Wang, Zheng-Gang Li, Li Niu

Journal of Electrochemistry

Electrochemical-surface plasmon resonance (EC-SPR) technique, developed in recent years, is a new technology which combines time-resolved surface plasmon resonance spectroscopy and electrochemical methods. Surface plasmon resonance (SPR) is a physical phenomenon generated by optical coupling using a metallic thin film and is very sensitive to optical analysis. The principles of SPR and EC-SPR are briefly introduced and the applications of the combination of SPR spectroscopy with electrochemical techniques are reviewed in this paper. This new technology has been widely used in such research areas as reaction dynamics, biochemical sensors, electrode/electrolyte interfaces, kinetic parameters and bimolecular interactions.


Optical Down-Conversion In Doped Znse:Tb3+ Nanocrystals, Sandip Das, K. C. Mandal Feb 2013

Optical Down-Conversion In Doped Znse:Tb3+ Nanocrystals, Sandip Das, K. C. Mandal

Faculty Publications

No abstract provided.


Ph Responsive Hydrogen Bonding Motif To Improve The Sensitivity Of Tumor Imaging, Fatimah Mohammed Algarni Jan 2013

Ph Responsive Hydrogen Bonding Motif To Improve The Sensitivity Of Tumor Imaging, Fatimah Mohammed Algarni

Electronic Thesis and Dissertation Repository

Magnetic resonance imaging (MRI) is a powerful non-invasive medical diagnostic technique. Superparamagnetic iron oxide nanoparticles (SPIO) are effective contrast agents and provide high sensitivity contrast in MRI. Recent research has demonstrated that nanoparticle clusters exhibit significantly higher relaxivity than individual nanoparticles.

In order to increase the sensitivity of tumor imaging, supramolecular chemistry was introduced to this field and a novel conjugation method was developed using click chemistry between azide functionalized nanoparticles and pH-sensitive hydrogen bonding building blocks. This pH-sensitive hydrogen bonded complex was synthesized to cluster nanoparticles under mildly acidic biological conditions.

Due to the unexpected X-ray crystal structure of …


Enhanced Performance Of A Microbial Fuel Cell Using Cnt/Mno2 Nanocomposites As A Bioanode Materials, S. Kalathil, A Hoa, J Shim, Mohammad Mansoob Khan Dr, J Lee, M H. Cho Jan 2013

Enhanced Performance Of A Microbial Fuel Cell Using Cnt/Mno2 Nanocomposites As A Bioanode Materials, S. Kalathil, A Hoa, J Shim, Mohammad Mansoob Khan Dr, J Lee, M H. Cho

Dr. Mohammad Mansoob Khan

The anode electrode material is a crucial factor for the overall performance of a microbial fuel cell (MFC). In this study, a plain carbon paper modified with the CNT/MnO 2 nanocomposite was used as the anode for the MFC and a mixed culture inoculum was used as the biocatalyst. The modified anode showed better electrochemical performance than that of plain carbon paper, and Brunauer Emmett Teller (BET) analysis showed the high surface area (94.6 m2/g) of the composite. The Mn4+ in the nanocomposite may enhance the electron transfer between the microorganisms and the anode material which facilitates electron conduction. Additionally, …


Studies Of Functionalized Nanoparticles For Smart Self-Assembly And As Controlled Drug Delivery, Xiaochu Ding Jan 2013

Studies Of Functionalized Nanoparticles For Smart Self-Assembly And As Controlled Drug Delivery, Xiaochu Ding

Dissertations, Master's Theses and Master's Reports - Open

This dissertation is related to the studies of functionalized nanoparticles for self-assembly and as controlled drug delivery system. The whole topic is composed of two parts. In the first part, the research was conducted to design and synthesize a new type of ionic peptide-functionalized copolymer conjugates for self-assembly into nanoparticle fibers and 3D scaffolds with the ability of multi-drug loading and governing the release rate of each drug for tissue engineering. The self-assembly study confirmed that such peptide-functionalized amphiphilic copolymers underwent different self-assembly behavior. The bigger nanoparticles were more easily assembled into nanoparticle fibers and 3D scaffolds with larger pore …


Stochastic Charge Transport In Multi-Island Single-Electron Tunneling Devices, Madhusudan A. Savaikar Jan 2013

Stochastic Charge Transport In Multi-Island Single-Electron Tunneling Devices, Madhusudan A. Savaikar

Dissertations, Master's Theses and Master's Reports - Open

The physics of the operation of singe-electron tunneling devices (SEDs) and singe-electron tunneling transistors (SETs), especially of those with multiple nanometer-sized islands, has remained poorly understood in spite of some intensive experimental and theoretical research. This computational study examines the current-voltage (IV) characteristics of multi-island single-electron devices using a newly developed multi-island transport simulator (MITS) that is based on semi-classical tunneling theory and kinetic Monte Carlo simulation. The dependence of device characteristics on physical device parameters is explored, and the physical mechanisms that lead to the Coulomb blockade (CB) and Coulomb staircase (CS) characteristics are proposed.

Simulations using …


Synthesis And Characterization Of Transition Metal Arsenide Nanocrystals And The Metastability And Magneto-Structural Phase Transition Behavior Of Mnas Nanocrystals, Yanhua Zhang Jan 2013

Synthesis And Characterization Of Transition Metal Arsenide Nanocrystals And The Metastability And Magneto-Structural Phase Transition Behavior Of Mnas Nanocrystals, Yanhua Zhang

Wayne State University Dissertations

This dissertation study focuses on (1) probing the magneto-structural phase transformation in nanoscale MnAs; (2) evaluation of the size-dependent phase stability of type-B MnAs (prepared by rapid injection); and (3) developing a general synthetic method for transition metal arsenide nanoparticles.

Discrete MnAs nanoparticles that adopt different structures at room temperature (type-A, α-structure and type-B, β-structure) have been prepared by the solution-phase arrested precipitation method. Atomic pair distribution and Rietveld refinement were employed on synchrotron data to explore the structural transitions of the bulk and nanoparticle samples, and these results were compared to AC magnetic susceptibility measurements of the samples. The …


Fabrication Of Two-Dimensional Nanostructures On Glass Using Nanosphere Lithography, Elmer Jim Wang Jan 2013

Fabrication Of Two-Dimensional Nanostructures On Glass Using Nanosphere Lithography, Elmer Jim Wang

Wayne State University Theses

It is desired to have artificial optical materials with controllable optical properties. Optical glass is the most common optical material for various applications. This research will attempt to create a thin layer on the substrate with controllable optical properties. The thin layer is a composite material with nanoscale features and controllable refractive index. Two-dimensional (2D) nanostructures will be created on the surface of optical glass using nanosphere lithography. In comparison with conventional techniques, this approach is more efficient and cost-effective for the creation of large areas of thin surface layers as an artificial material. A uniform monolayer of nanospheres will …


Surface Plasmon Polaritons And Waveguide Modes At Structured And Inhomogeneous Surfaces, Javier Polanco Jan 2013

Surface Plasmon Polaritons And Waveguide Modes At Structured And Inhomogeneous Surfaces, Javier Polanco

Open Access Theses & Dissertations

In chapter 1, properties of a p-polarized surface plasmon polariton are studied, propagating circumferentially around a portion of a cylindrical interface between vacuum and a metal, a situation investigated earlier by M. V. Berry (J. Phys. A: Math. Gen. 8, (1975) 1952). When the metal is convex toward the vacuum this mode is radiative and consequently is attenuated as it propagates on the cylindrical surface. An approximate analytic solution of the dispersion relation for this wave is obtained by an approach different from the one used by Berry, and plots of the real and imaginary parts of its wave number …


Colloidal Nano-Apatite Particles With Active Luminescent And Magentic Properties For Biotechnology Applications, Rajendra Kasinath, Kumar Ganesan Jan 2013

Colloidal Nano-Apatite Particles With Active Luminescent And Magentic Properties For Biotechnology Applications, Rajendra Kasinath, Kumar Ganesan

Environmental Engineering

Colloidal Nano-apatite Particles with Active Luminescent and Magentic Properties for Biotechnology Applications. The synthesis of functional nano-materials is a burgeoning field that has produced remarkable and consistent breakthroughs over the last two decades. Individual particles have become smaller and shown potential for well defined functionality. However, there are still unresolved problems, a primary one being the loss of functionality and novelty due to uncontrolled aggregation driven by surface energy considerations. As such the first design criteria to harness the true potential of nanoparticles is to prevent unwanted agglomeration by: (1) improving, and, if possible, (2) controlling aggregation behavior. This requires …


The Critical Role Of Mechanism-Based Models For Understanding And Predicting Liposomal Drug Loading, Binding And Release Kinetics, Sweta Modi Jan 2013

The Critical Role Of Mechanism-Based Models For Understanding And Predicting Liposomal Drug Loading, Binding And Release Kinetics, Sweta Modi

Theses and Dissertations--Pharmacy

Liposomal delivery systems hold considerable promise for improvement of cancer therapy provided that critical formulation design criteria can be met. The main objective of the current project was to enable quality by design in the formulation of liposomal delivery systems by developing comprehensive, mechanism-based mathematical models of drug loading, binding and release kinetics that take into account not only the therapeutic requirement but the physicochemical properties of the drug, the bilayer membrane, and the intraliposomal microenvironment.

Membrane binding of the drug affects both drug loading and release from liposomes. The influence of bilayer composition and phase structure on the partitioning …


Quantum Computing With Steady State Spin Currents, Brian Matthew Sutton Jan 2013

Quantum Computing With Steady State Spin Currents, Brian Matthew Sutton

Open Access Theses

Many approaches to quantum computing use spatially confined qubits in the presence of dynamic fields to perform computation. These approaches are contrasted with proposals using mobile qubits in the presence of static fields. In this thesis, steady state quantum computing using mobile electrons is explored using numerical modeling. Firstly, a foundational introduction to the case of spatially confined qubits embodied via quantum dots is provided. A collection of universal gates implemented with dynamic fields is described using simulations. These gates are combined to implement a five-qubit Grover search to provide further insight on the time-dependent field approach. Secondly, the quantum …


Accurate Prediction Of Spectral Phonon Relaxation Time And Thermal Conductivity Of Intrinsic And Perturbed Materials, Tianli Feng Jan 2013

Accurate Prediction Of Spectral Phonon Relaxation Time And Thermal Conductivity Of Intrinsic And Perturbed Materials, Tianli Feng

Open Access Theses

The prediction of spectral phonon relaxation time, mean-free-path, and thermal conductivity can provide significant insights into the thermal conductivity of bulk and nanomaterials, which are important for thermal management and thermoelectric applications. We perform frequency-domain normal mode analysis (NMA) on pure bulk argon and pure bulk germanium. Spectral phonon properties, including the phonon dispersion, relaxation time, mean free path, and thermal conductivity of argon and germanium at different temperatures have been calculated. We find the dependence of phonon relaxation time τ on frequency ω and temperature T vary from ~ω-1.3 to ~ω-1.8 and ~T-0.8 to ~T-1.8 …


Transparent Actuator Made With Few Layer Graphene Electrode And Dielectric Elastomer, For Variable Focus Lens, Taeseon Hwang, Hyeok-Yong Kwon, Joon-Suk Oh, Jung-Pyo Hong, Seung-Chul Hong, Youngkwan Lee, Hyouk Ryeo Choi, Kwang J. Kim, Mainul Hossain Bhuiya, Jae Do Nam Jan 2013

Transparent Actuator Made With Few Layer Graphene Electrode And Dielectric Elastomer, For Variable Focus Lens, Taeseon Hwang, Hyeok-Yong Kwon, Joon-Suk Oh, Jung-Pyo Hong, Seung-Chul Hong, Youngkwan Lee, Hyouk Ryeo Choi, Kwang J. Kim, Mainul Hossain Bhuiya, Jae Do Nam

Mechanical Engineering Faculty Research

A transparent dielectric elastomer actuator driven by few-layer-graphene (FLG) electrode was experimentally investigated. The electrodes were made of graphene, which was dispersed inN-methyl-pyrrolidone. The transparent actuator was fabricated from developed FLG electrodes.The FLG electrode with its sheet resistance of 0.45 kΩ/sq (80 nm thick) was implemented to mask silicone elastomer. The developed FLG-driven actuator exhibited an optical transparency of over 57% at a wavenumber of 600 nm and produced bending displacement performance ranging from 29 to 946 μm as functions of frequency and voltage. The focus variation was clearly demonstrated under actuation to study its application-feasibility in …


Development Of Novel Nano-Composite Membranes As Introduction Systems For Mass Spectrometers: Contrasting Nano-Composite Membranes And Conventional Inlet Systems, Luis Miranda Jan 2013

Development Of Novel Nano-Composite Membranes As Introduction Systems For Mass Spectrometers: Contrasting Nano-Composite Membranes And Conventional Inlet Systems, Luis Miranda

USF Tampa Graduate Theses and Dissertations

This dissertation presents the development of novel nano-composite membranes as introduction systems for mass spectrometers. These nano-composite membranes incorporate anodic aluminum oxide (AAO) membranes as templates that can be used by themselves or modified by a variety of chemical deposition processes. Two types of nano-composite membranes are presented. The first nano-composite membrane has carbon deposited within the pores of an AAO membrane. The second nano-composite membrane is made by coating an AAO membrane with a thin polymer film. The following chapters describe the transmission properties these nano-composite membranes and compare them to conventional mass spectrometry introduction systems. The nano- composite …


Transformations, Bioavailability And Toxicity Of Manufactured Zno Nanomaterials In Wastewter, Sewwandi Rathnayake Jan 2013

Transformations, Bioavailability And Toxicity Of Manufactured Zno Nanomaterials In Wastewter, Sewwandi Rathnayake

Theses and Dissertations--Plant and Soil Sciences

In order to properly evaluate the ecological and human health risks of ZnO Manufactured nanomaterials (MNMs) released to the environment, it is critical to understand the likely transformation products in the wastewater treatment process and in soils receiving biosolids. To address this critical knowledge gap, we examined the transformation reactions of 30 nm ZnO MNMs in single component and multi-component systems, with phosphate and natural organic matter (NOM). We also assessed the influence of nano ZnO transformation on the bioavailability, and toxicity of ZnO transformation products to Triticum aestivum. The data revealed that ZnO MNMs react with phosphate at …


Scaling Of The Coercive Field In Ferroelectrics At The Nanoscale, R. V. Gaynutdinov, M. Minnekaev, S. Mitko, A. L. Tolstikhina, A. Zenkevich, Stephen Ducharme, Vladimir M. Fridkin Jan 2013

Scaling Of The Coercive Field In Ferroelectrics At The Nanoscale, R. V. Gaynutdinov, M. Minnekaev, S. Mitko, A. L. Tolstikhina, A. Zenkevich, Stephen Ducharme, Vladimir M. Fridkin

Stephen Ducharme Publications

The scaling of the coercive field in ferroelectric films at the nanoscale is investigated experimentally. The scaling in the films of copolymer vinylidene fluoride and BaTiO3 with thickness equal by the order of value to the critical domain nucleus size 1–10 nm reveals deviation from the well-known Kay–Dunn law. At this thickness region coercive field does not depend on thickness and coincides with Landau–Ginzburg–Devonshire value.


Application And Characterization Of Self-Assembled Monolayers In Hybrid Electronic Systems, Michael Enoch Celesin Jan 2013

Application And Characterization Of Self-Assembled Monolayers In Hybrid Electronic Systems, Michael Enoch Celesin

USF Tampa Graduate Theses and Dissertations

In this study, we explore ultra-thin insulators of organic and inorganic composition and their potential role as high-speed rectifiers. Typical applications for these structures include IR sensing, chemical detection, high speed logic circuits, and MEMS enhancements. While there are many elements in the functional group required to create a rectifying antenna (rectenna), the primary thrust of this work is on the rectifier element itself.

To achieve these research goals, a very good understanding of quantum tunneling was required to model the underlying phenomenon of charge conduction. The development of a multi-variable optimization routine for tunneling prediction was required. MATLAB was …


Magnetization Dynamics And Related Phenomena In Nanostructures, Sayan Chandra Jan 2013

Magnetization Dynamics And Related Phenomena In Nanostructures, Sayan Chandra

USF Tampa Graduate Theses and Dissertations

Collective magnetic behavior in nanostructures is a phenomenon commonly observed in various magnetic systems. It arises due to competing inter/intra–particle interactions and size distribution and can manifest in phenomena like magnetic freezing, magnetic aging, and exchange bias (EB) effect. In order to probe these rather complex phenomena, conventional DC and AC magnetic measurements have been performed along with radio–frequency transverse susceptibility (TS) measurements. We also demonstrate the magnetic entropy change as a parameter sensitive to subtle changes in the magnetization dynamics of nanostructures. The focus of this dissertation is to study the collective magnetic behavior in core-shell nanostructures of Fe/γ–Fe …


Charge And Discharge Behaviour Of Li-Ion Batteries At Various Temperatures Containing Licoo2 Nanostructured Cathode Produced By Ccso, Y. Y. Mamyrbayeva, R. E. Beissenov, Mkhitar A. Hobosyan, S. E. Kumekov, Karen S. Martirosyan Jan 2013

Charge And Discharge Behaviour Of Li-Ion Batteries At Various Temperatures Containing Licoo2 Nanostructured Cathode Produced By Ccso, Y. Y. Mamyrbayeva, R. E. Beissenov, Mkhitar A. Hobosyan, S. E. Kumekov, Karen S. Martirosyan

Physics and Astronomy Faculty Publications and Presentations

There are technical barriers for penetration market requesting rechargeable lithium-ion battery packs for portable devices that operate in extreme hot and cold environments. Many portable electronics are used in very cold (-40 °C) environments, and many medical devices need batteries that operate at high temperatures. Conventional Li-ion batteries start to suffer as the temperature drops below 0 °C and the internal impedance of the battery increases. Battery capacity also reduced during the higher/lower temperatures. The present work describes the laboratory made lithium ion battery behaviour features at different operation temperatures. The pouch-type battery was prepared by exploiting LiCoO2 cathode material …


Reactive Self-Heating Model Of Aluminum Spherical Nanoparticles, Karen S. Martirosyan, Maxim Zyskin Jan 2013

Reactive Self-Heating Model Of Aluminum Spherical Nanoparticles, Karen S. Martirosyan, Maxim Zyskin

Physics and Astronomy Faculty Publications and Presentations

Aluminum-oxygen reaction is important in highly energetic and high pressure generating systems. Recent experiments with nanostructured thermites suggest that oxidation of aluminum nanoparticles occurs in a few microseconds. Such rapid reaction cannot be explained by a conventional diffusion-based mechanism. We present a rapid oxidation model of a spherical aluminum nanoparticle, using Cabrera-Mott moving boundary mechanism, and taking self-heating into account. In our model, electric potential solves the nonlinear Poisson equation. In contrast with the Coulomb potential, a “double-layer” type solution for the potential and self-heating leads to enhanced oxidation rates. At maximal reaction temperature of 2000 C, our model predicts …


Novel Resist Systems For Euv Lithography : Ler, Chain-Scission, Nanoparticle And More, Brian Cardineau Jan 2013

Novel Resist Systems For Euv Lithography : Ler, Chain-Scission, Nanoparticle And More, Brian Cardineau

Legacy Theses & Dissertations (2009 - 2024)

Extreme Ultraviolet (EUV) lithography is currently the best option for replacing 193-nm lithography in future IC fabrication. For EUV to be successful, however, there are a number of challenges that must be overcome. Current resist designs struggle to meet the demands of future lithography nodes. We propose the best way to overcome these obstacles is through the design of novel resist systems.


White-Light And Infrared Emission From Sicxoy-Based Materials, Vasileios Nikas Jan 2013

White-Light And Infrared Emission From Sicxoy-Based Materials, Vasileios Nikas

Legacy Theses & Dissertations (2009 - 2024)

The development of a Si-based light source has attracted a high level of attention due to its potential unique advantages. For one, the monolithic integration of photonics on on-chip level along with the microelectronics devices would enhance the data processing rate. Additionally the cost per transmitted/processed information capacity can be significantly reduced.


Mueller Based Scatterometry And Optical Characterization Of Semiconductor Materials, Gangadhara Raja Muthinti Jan 2013

Mueller Based Scatterometry And Optical Characterization Of Semiconductor Materials, Gangadhara Raja Muthinti

Legacy Theses & Dissertations (2009 - 2024)

Scatterometry is one of the most useful metrology methods for the characterization and control of critical dimensions (CD) and the detailed topography of periodic structures found in microelectronics fabrication processes. Spectroscopic ellipsometry (SE) and normal incidence reflectometry (NI) based scatterometry are the most widely used optical methodologies for metrology of these structures. Evolution of better optical hardware and faster computing capabilities led to the development of Mueller Matrix (MM) based Scatterometry (MMS). Dimensional metrology using full Mueller Matrix (16 element) scatterometry in the wavelength range of 245nm-1000nm was discussed in this work. Unlike SE and NI, MM data provides complete …


Surface Coated Eu(Oh)3 Nanorods: A Facile Synthesis, Characterization, Mr Relaxivities And In Vitro Cytotoxicity, Krishna Katte, Ja Young Park, Wenlong Xu, Badrul Alam Bony, Woo Cheol Heo, Tirusew Tegafaw, Cho Rong Kim, Md Wasi Ahmad, Seonguk Jin, Jong Su Baeck, Yongmin Chang, Tae Jeong Kim, Ji Eun Bae, Kwon Seok Chae, Ji Yun Jeong, Gang Ho Lee Dec 2012

Surface Coated Eu(Oh)3 Nanorods: A Facile Synthesis, Characterization, Mr Relaxivities And In Vitro Cytotoxicity, Krishna Katte, Ja Young Park, Wenlong Xu, Badrul Alam Bony, Woo Cheol Heo, Tirusew Tegafaw, Cho Rong Kim, Md Wasi Ahmad, Seonguk Jin, Jong Su Baeck, Yongmin Chang, Tae Jeong Kim, Ji Eun Bae, Kwon Seok Chae, Ji Yun Jeong, Gang Ho Lee

Dr. Mohammad Wasi Ahmad (Md Wasi Ahmad)

No abstract provided.


Synthesis Of Gold Nanoparticles Using A Stainless Steel Mesh, Thi Hiep Han, Mohammad Mansoob Khan Dr, S Kalathil, J Lee, M H. Cho Dec 2012

Synthesis Of Gold Nanoparticles Using A Stainless Steel Mesh, Thi Hiep Han, Mohammad Mansoob Khan Dr, S Kalathil, J Lee, M H. Cho

Dr. Mohammad Mansoob Khan

A novel, rapid, one-pot, and facile approach was developed to synthesize positively charged gold nanoparticles [(+) AuNPs] by employing an aqueous solution of HAuCl4·3H2O as a precursor at 30 °C and a stainless-steel mesh as a reducing agent. The penetration of Cl− ions into the stainless-steel surface results in corrosion on the stainless-steel surface and excretion of electrons which are used for reduction of Au3+ → Au0. As a result, (+) AuNPs 5-20 nm in size, mostly monodispersed, were synthesized within 3 h. The as-synthesized AuNPs were charaterized by UV-vis, DLS, XRD, TEM, HR-TEM, EDX and SAED. The utilization of …