Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2016

Discipline
Institution
Keyword
Publication
Publication Type
File Type

Articles 61 - 90 of 1515

Full-Text Articles in Mechanical Engineering

3-Axis Automated Probe Traverse For Aerodynamic Testing, Tananant Boonya-Ananta, Ricky Wai, Zander Oostman, Teyvon Brooks Dec 2016

3-Axis Automated Probe Traverse For Aerodynamic Testing, Tananant Boonya-Ananta, Ricky Wai, Zander Oostman, Teyvon Brooks

Mechanical Engineering

Our primary objective is to design, build, and test an automated traverse to hold measurement probes in Cal Poly’s low speed wind tunnel. The device should cause minimal flow disturbance. It’s movements must be able to cover eighty percent of the three-dimensional test section. The device should have a mounting point for interchangeable probes. The assembly is to be integrated with the current frame structure on the wind tunnel test section, and should allow very minimal deflection of the measurement probe. The user should be able to control the motion of the traverse via a computer interface which supports automatic …


Non-Destructive Testing Of Carbon Fiber Crank Arms, Timothy Hoekstra, Grant Pocklington, Johnathan Simeroth Dec 2016

Non-Destructive Testing Of Carbon Fiber Crank Arms, Timothy Hoekstra, Grant Pocklington, Johnathan Simeroth

Mechanical Engineering

Carbon fiber components present unique challenges for detecting defects, damage, and fatigue. Nondestructive methods exist for testing and locating defects. However, most of these methods are expensive, not versatile enough for practical use on non-idealized parts, or both. Vibrothermography can be an affordable option and has shown promising results with thin rectangular panels. The goal of this senior project was to assess the feasibility of using vibrothermography to find defects in SRAM carbon fiber crank arms. Our team found vibrothermography to be a feasible method of non-destructive testing for carbon fiber crank arms, and this report discusses the development and …


Modeling, Optimizing And Testing Thermoelectric Generators For Liquid-To-Liquid Low Grade Waste Heat Recovery, Ali Eyddan Hamil Dec 2016

Modeling, Optimizing And Testing Thermoelectric Generators For Liquid-To-Liquid Low Grade Waste Heat Recovery, Ali Eyddan Hamil

Masters Theses

The use of thermoelectric generators (TEGs) for producing electricity from low grade waste heat is thought to be a great solution in the future to reduce the power generation cost because of their advantages of reliability and environmental friendliness. Therefore, the current project aims to study thermoelectric generators for low grade waste heat recovery. In this work, a single unit cell of liquid to liquid thermoelectric generator attached with heat exchangers (heat sinks) is modeled using an internal flow. Its optimum design is obtained based on heat sink optimization and the optimal design method. An analytical model of four unit …


Experimental Characterization And Simulation Of Carbon Nanotube Strain Sensing Films, Nagendra Krishna Chaitanya Tummalapalli Dec 2016

Experimental Characterization And Simulation Of Carbon Nanotube Strain Sensing Films, Nagendra Krishna Chaitanya Tummalapalli

Masters Theses

Carbon Nanotubes (CNTs) have excellent mechanical, electrical and electromechanical properties. These properties led to a lot of novel applications. Due to change in electrical properties under mechanical loading, these composites have potential applications in strain sensors, when these are fabricated as films. CNT-based films are commonly fabricated using different physical and chemical techniques based on the property requirements governing those applications. In this work, CNT films were prepared using wet chemical based methods and chemical vapor deposition techniques.

Plasma chemical vapor deposition using microwave power is used in the first method to deposit films on silicon substrates, using Nickel film …


An Emg-Based Patient Monitoring System Using Zynq Soc Device, Farhad Fallahlalehzari Dec 2016

An Emg-Based Patient Monitoring System Using Zynq Soc Device, Farhad Fallahlalehzari

UNLV Theses, Dissertations, Professional Papers, and Capstones

This thesis describes the design, development, and testing of an EMG-based patient monitoring system using the Zynq device. Zynq is a system on chip device designed by Xilinx which consists of an ARM dual cortex-A9 processor as well as an FPGA integrated into one chip. This work also analyzes the performance of image-processing algorithms on this system and compares that performance to more traditional PC-based systems. Image processing algorithms, such as Sobel edge detection, dilation and erosion, could be used in conjunction with a camera for the patient monitoring purposes. These algorithms often perform sub-optimally on processors because of their …


Analytical Study Of Miniature Thermoelectric Device, Mohammed Dhannoon Dec 2016

Analytical Study Of Miniature Thermoelectric Device, Mohammed Dhannoon

Masters Theses

Miniature thermoelectric devices (TE) have been regarded as hopeful devices to attain efficient cooling in microprocessors and other small-scale devices. To recognize the performances of miniature thermoelectric coolers, a thermoelectric cooling module is theoretically analyzed. Particular attention is paid to the impact of the thermoelectric element length effect and the substrate material type influence on the cooling performance. The electrical contact resistance and thermal contact are taken into account.

Furthermore, miniature thermoelectric is compared with large thermoelectric, and effective material properties of miniature thermoelectric are studied. The obtained results also demonstrate power density (cooling/heating power per unit area of the …


Cluster Control Of A Multi-Robot Tracking Network And Tracking Geometry Optimization, Jasmine Cashbaugh Dec 2016

Cluster Control Of A Multi-Robot Tracking Network And Tracking Geometry Optimization, Jasmine Cashbaugh

Engineering Ph.D. Theses

The position of a moving object can be tracked in numerous ways, the simplest of which is to use a single static sensor. However, the information from a single sensor cannot be verified and may not be reliable without performing multiple measurements of the same object. When multiple static sensors are used, each sensor need only take a single measurement which can be combined with other sensor measurements to produce a more accurate position estimate. Work has been done to develop sensors that move with the tracked object, such as relative positioning, but this research takes this concept one step …


Ole Miss Engineer 2016-2017 Dec 2016

Ole Miss Engineer 2016-2017

Ole Miss Engineer

No abstract provided.


Thermomechanical Properties Of Novel Lanthanum Zirconate Based Thermal Barrier Coatings - An Integrated Experimental And Modeling Study, Xingye Guo Dec 2016

Thermomechanical Properties Of Novel Lanthanum Zirconate Based Thermal Barrier Coatings - An Integrated Experimental And Modeling Study, Xingye Guo

Open Access Dissertations

Thermal barrier coatings (TBCs) are refractory materials deposited on gas turbine components, which provide thermal protection for metallic components at operating conditions. The current state-of-art TBC material is yttria-stabilized zirconia (YSZ), whose service temperature is limited to 1200 celsius, due to sintering and phase transition at higher temperatures. In comparison, lanthanum zirconate (La2Zr2O7, LZ) has become a promising candidate material for TBCs due to its lower thermal conductivity and higher phase stability compared to YSZ.

The primary objective of this thesis is to design a novel robust LZ-based TBC system suitable for applications beyond 1200 celsius. Due to LZ’s low …


Evaluating The Performance Of Passive Chilled Beams With Respect To Energy Efficiency And Thermal Comfort, Janghyun Kim Dec 2016

Evaluating The Performance Of Passive Chilled Beams With Respect To Energy Efficiency And Thermal Comfort, Janghyun Kim

Open Access Dissertations

Existing modeling approaches for passive chilled beams determined from tests on individual chilled beams in a laboratory are not adequate for assessing overall energy usage and occupant comfort within building simulation programs. In addition, design guidelines for passive chilled beam systems are needed for identifying appropriate applications and optimal configurations. This thesis includes (i) extensive experimental studies for characterizing the performance of passive chilled beams, in both laboratory settings and in field studies, (ii) development of passive chilled beam performance prediction models, (iii) integration of these models into building simulation models/tools and (iv) use of building simulation for overall assessment …


Modifying Burning Rate And Agglomeration Size In Aluminized Composite Solid Propellants Using Mechanically Activated Metals, Hatem Mohamed Belal Dec 2016

Modifying Burning Rate And Agglomeration Size In Aluminized Composite Solid Propellants Using Mechanically Activated Metals, Hatem Mohamed Belal

Open Access Dissertations

Agglomeration reduction techniques are important field in solid propellant industry, Large agglomeration results in excessive two phase losses. Tailored composite particles has been applied to tailor aluminum particle ignition and combustion. In this research, mechanical activated aluminum magnesium powders are synthesized, tested in both laser ignition using CO2 and propellant. Prepared powders categorized into particle size that suitable for propellant application. Laser ignition tests showed that the prepared powder are more reactive than magnalium which has the same Al:Mg weight ratio. Agglomeration capturing showed that the prepared powder produce much less than neat aluminum or even similar physical mixture of …


Hydrodynamics Of Swimming Microorganisms In Complex Fluids, Gaojin Li Dec 2016

Hydrodynamics Of Swimming Microorganisms In Complex Fluids, Gaojin Li

Open Access Dissertations

Swimming motion of microorganisms, such as spermatozoa, plankton, algae and bacteria, etc., ubiquitously occurs in nature. It affects many biological processes, including reproduction, infection and the marine life ecosystem. The hydrodynamic effects are important in microorganism swimming, their nutrient uptake, fertilization, collective motions and formation of colonies. In nature, microorganisms have evolved to use various fascinating ways for locomotion and transport. Different designs are also developed for the locomotion of artificial nano- and microswimmers. In this study, we use several different computational models to investigate the behavior of microswimmers.

Microorganisms typically swim in the low Reynolds number regime, where inertia …


Experimentally Validated 3d Md Model For Afm-Based Tip-Based Nanomanufacturing, Rapeepan Promyoo Dec 2016

Experimentally Validated 3d Md Model For Afm-Based Tip-Based Nanomanufacturing, Rapeepan Promyoo

Open Access Dissertations

In order to control AFM-based TBN to produce precise nano-geometry efficiently, there is a need to conduct a more focused study of the effects of different parameters, such as feed, speed, and depth of cut on the process performance and outcome. This is achieved by experimentally validating a MD simulation model of nanomachining, and using it to conduct parametric studies to guide AFM-based TBN. A 3D MD model with a larger domain size was developed and used to gain a unique insight into the nanoindentation and nanoscratching processes such as the effect of tip speed (e.g. effect of tip speed …


Fracture Analysis In Biomimetic Bouligand Architectures, Nobphadon Suksanqpanya Dec 2016

Fracture Analysis In Biomimetic Bouligand Architectures, Nobphadon Suksanqpanya

Open Access Dissertations

The Bouligand structure, which is found in many biological materials, is a hierarchical architecture that features uniaxial fiber layers assembled periodically into a helicoidal pattern. Many studies have highlighted the high damage-resistant performance of Bouligand structures and its biomimetic materials. One of the outstanding species with the Bouligand structures is the smashing Mantis Shrimp, Odontodactylus Scyllarus, (or stomatopod) due to its capability of generating high speed, high acceleration blows using its raptorial appendage to defeat highly armored preys. The load-bearing part of this appendage, the dactyl club, contains an interior region, which is mainly characterized by the Bouligand structure. This …


Fundamental Studies Of Flame Propagation In Lean-Burn Natural Gas Engines, Zhiyan Wang Dec 2016

Fundamental Studies Of Flame Propagation In Lean-Burn Natural Gas Engines, Zhiyan Wang

Open Access Dissertations

Lean-burn natural gas engines offer enhanced thermal efficiencies and reduced soot and NOx emissions. However, cycle-to-cycle variability in combustion that can result from unreliable ignition, variability in equivalence ratio and quenching is a challenge. Reliability of ignition can be improved by employing a dual-fuel ignition strategy in which a small quantity of diesel fuel is injected to initiate ignition. Computational studies of n-heptane/methane-air mixing layers are performed to provide insight into the fundamental physics of dual-fuel ignition. The results show that the characteristic time required for steady premixed flame propagation has three components: time for autoignition to occur, time for …


Size Scaling Of Strength And Toughness For 3d Printed Polymer Specimens, Darren Thomas Bell Dec 2016

Size Scaling Of Strength And Toughness For 3d Printed Polymer Specimens, Darren Thomas Bell

Open Access Theses

To find material systems that offer low density and high strength, stiffness or toughness, hierarchically designed material systems have provided a promising research area. This thesis lays the groundwork for designing efficient micro-architectured material systems by characterizing size effects for 3d printed polymer parts. Two methods were used to analyze data from 3-point bend tests for specimens of varying size: the load-separation method was used for finding the point of crack growth initiation and Bazant’s method was used to find shape independent strength at failure. The strength values were used as inputs for finding size independent material constants within a …


Thermal Transport In Lithium Ion Batteries: An Experimental Investigation Of Interfaces And Granular Materials, Aalok Jaisheela Uday Gaitonde Dec 2016

Thermal Transport In Lithium Ion Batteries: An Experimental Investigation Of Interfaces And Granular Materials, Aalok Jaisheela Uday Gaitonde

Open Access Theses

Increasing usage and recent accidents due to lithium-ion (Li-ion) batteries exploding or catching on fire has inspired research on the characterization and thermal management of these batteries. In cylindrical 18650 cells, heat generated during the battery's charge/discharge cycle is poorly dissipated to the surrounding through its metallic case due to the poor thermal conductivity of the jelly roll, which is spirally wound with many interfaces between electrodes and the polymeric separator. This work presents a technique to measure the thermal conduction across the metallic case-plastic separator interface, which ultimately limits heat transfer out of the jelly roll.

The polymeric separator …


Reaction Tuning Of Selectively Deposited Nano-Thermite Inks For Thrust And Heat Deposition, Raghav Ramachandran Dec 2016

Reaction Tuning Of Selectively Deposited Nano-Thermite Inks For Thrust And Heat Deposition, Raghav Ramachandran

Open Access Theses

Currently there is very little systematic work that quantifies the performance of energetic materials in terms of thrust or heat deposition applied to electronic circuits. A better understanding of the interactions between nano-scale energetic materials and electronic systems, as a function of stoichiometry is needed for enhanced defeat. Both of these needs are addressed in this research. Formulations of Al-CuO and Al-Bi2O3 nano-thermites were prepared at different equivalence ratios and selectively deposited onto silicon substrates and thrust and heat deposition of these materials was quantified. Both nano-thermite systems produced maximum thrust near stoichiometric ratios, and more fuel-rich mixtures led to …


Early Bearing Fault Analysis Using High Frequency Enveloping Techniques, Ilya Shulkin Dec 2016

Early Bearing Fault Analysis Using High Frequency Enveloping Techniques, Ilya Shulkin

Open Access Theses

High frequency acceleration enveloping is one of many tools that vibration analysts have at their disposal for the diagnosis of bearing faults in rotating machinery. This technique is believed to facilitate very early detection of potential failures by detecting low amplitude repetitive impacts in frequency ranges above conventional condition monitoring. One traditional enveloping method uses a mathematical operation known as the Hilbert transform along with other signal processing procedures such as band-pass filtering and full-wave rectification. For comparison, another method uses a proprietary algorithm included in National Instruments’ LabVIEWTM add-on package: Sound and Measurement Suite. Enveloping’s inherent problem with noise …


Investigation Of Thin Film Thermal Transport Using Micro-Raman Thermometry And Tip Enhanced Raman Spectroscopy, Mithun Srinivasan Dec 2016

Investigation Of Thin Film Thermal Transport Using Micro-Raman Thermometry And Tip Enhanced Raman Spectroscopy, Mithun Srinivasan

Open Access Theses

In recent years, a steady increase in the need for packing more energy in smaller devices had driven the need for better understanding of thermal transport in thin films and designing methods to manipulate them. This can be attributed as the reason for numerous efforts made in the past decade to achieve temperature resolution at nanoscale. Such techniques can help us in understanding the thermal conductivity of thin films which can result in an improved performance of these devices. The temperature probing technique must be non-invasive to avoid damaging the vulnerable thin films, fast to study the energy transport and …


Free Edge Stress Analysis Of Laminated Structures With Arbitrary Cross Sections Using Mechanics Of Structure Genome, Lingxuan Zhou Dec 2016

Free Edge Stress Analysis Of Laminated Structures With Arbitrary Cross Sections Using Mechanics Of Structure Genome, Lingxuan Zhou

Open Access Theses

Composite laminates have been increasingly used in advanced structural applications, due to their excellent strength-to-weight properties and considerable flexibility on designing with respect to the laminate layup. However, the heterogeneity and anisotropy of composite laminates have brought many challenges for analysis and numerous researches have been devoted in this field. A well known problem which has been studied intensively is the so-called free-edge problem. It states that due to the mismatch in elastic properties of adjacent layers, full-scale three-dimensional (3D) and highly concentrated stress fields will occur in the vicinity of the free edges. The interlaminar stresses grow very rapidly …


Analysis Of Composite Plates By Using Mechanics Of Structure Genome And Comparison With Ansys, Banghua Zhao Dec 2016

Analysis Of Composite Plates By Using Mechanics Of Structure Genome And Comparison With Ansys, Banghua Zhao

Open Access Theses

Motivated by a recently discovered concept, Structure Genome (SG) which is defined as the smallest mathematical building block of a structure, a new approach named Mechanics of Structure Genome (MSG) to model and analyze composite plates is introduced. MSG is implemented in a general-purpose code named SwiftComp™, which provides the constitutive models needed in structural analysis by homogenization and pointwise local fields by dehomogenization. To improve the user friendliness of SwiftComp™, a simple graphic user interface (GUI) based on ANSYS Mechanical APDL platform, called ANSYS-SwiftComp GUI is developed, which provides a convenient way to create some common SG models or …


Energy-Efficient Management Of Mechanical Ventilation And Relative Humidity In Hot-Humid Climates, Florida Solar Energy Center, Charles Withers, Jr. Dec 2016

Energy-Efficient Management Of Mechanical Ventilation And Relative Humidity In Hot-Humid Climates, Florida Solar Energy Center, Charles Withers, Jr.

FSEC Energy Research Center®

The U.S. Department of Energy's Building America research team Building America Partnership for Improved Residential Construction conducted this research project to gain data and insight into these issues. The project focused on energy-efficient management of mechanical ventilation and RH during the cooling season. It consisted of eight test configurations. A particular focus evaluated how well a ductless seasonal energy-efficiency ratio (SEER) 21.5 mini-split heat pump (MSHP) could perform as the primary cooling system without a dehumidifier for supplemental dehumidification in a continuously mechanically ventilated house.


Microstructure, Wetting Angle And Corrosion Of Aluminum-Silicon Alloys, Shvetashva Suri Dec 2016

Microstructure, Wetting Angle And Corrosion Of Aluminum-Silicon Alloys, Shvetashva Suri

Theses and Dissertations

In this study the effect of composition, surface roughness and water droplet size on contact angle and corrosion properties of cast Aluminum-Silicon alloys containing Si from 5% to 50% have been examined. The water contact angle was measured on a given sample using a goniometer. In addition, the effect of surface roughness and droplet size on contact angle has been measured for alloys at a fixed composition. The microstructures can be found in this report with sizes of primary and eutectic Silicon as well as inter-particle spacing between Silicon. Contact angle measurements are accompanied with a photographic validation of the …


Modeling Methods For Merging Computational And Experimental Aerodynamic Pressure Data, Jacob Courtney Haderlie Dec 2016

Modeling Methods For Merging Computational And Experimental Aerodynamic Pressure Data, Jacob Courtney Haderlie

Open Access Dissertations

This research describes a process to model surface pressure data sets as a function of wing geometry from computational and wind tunnel sources and then merge them into a single predicted value. The described merging process will enable engineers to integrate these data sets with the goal of utilizing the advantages of each data source while overcoming the limitations of both; this provides a single, combined data set to support analysis and design. The main challenge with this process is accurately representing each data source everywhere on the wing. Additionally, this effort demonstrates methods to model wind tunnel pressure data …


Carbon Nanotube Thermal Interfaces And Related Applications, Stephen L. Hodson Dec 2016

Carbon Nanotube Thermal Interfaces And Related Applications, Stephen L. Hodson

Open Access Dissertations

The development of thermal interface materials (TIMs) is necessitated by the temperature drop across interfacing materials arising from macro and microscopic irregularities of their surfaces that constricts heat through small contact regions as well as mismatches in their thermal properties. Similar to other types of TIMs, CNT TIMs alleviate the thermal resistance across the interface by thermally bridging two materials together with cylindrical, high-aspect ratio, and nominally vertical conducting elements. Within the community of TIM engineers, the vision driving the development of CNT TIMs was born from measurements that revealed impressively high thermal conductivities of individual CNTs. This vision was …


Concurrent Detection And Isolation Of Cellular And Molecular Biomarkers, Wanfeng Huang Dec 2016

Concurrent Detection And Isolation Of Cellular And Molecular Biomarkers, Wanfeng Huang

Open Access Dissertations

Detection of cancer markers such as protein biomolecules and cancer cells in bodily fluids is of great importance in early diagnosis, prognosis as well as evaluation of therapy efficacy. Numerous devices have been developed for detecting either cellular or molecular targets, however there has not yet been a system that can simultaneously detect both cellular and molecular targets effectively. Molecule and cell-based assays are important because each type of target can tell a different story about the state of the disease and the two types of information can potentially be combined and/or compared for more accurate biological or clinical assessments. …


A Method For Selecting Hvac Retrofit Solutions For Existing Small- And Medium-Sized Commercial Buildings, Bonggil Jeon Dec 2016

A Method For Selecting Hvac Retrofit Solutions For Existing Small- And Medium-Sized Commercial Buildings, Bonggil Jeon

Open Access Dissertations

The primary purpose of the present study is to develop a framework and methodology for evaluating appropriate Heating, Ventilating, and Air Conditioning (HVAC) retrofit solutions that can be effectively retrofitted into different types of small- and medium-sized commercial buildings (SMSCB). Additionally, development of an advanced data-driven decision-making tool is introduced as a benefit of proposed framework. In recent years, considerable attention has been focused on retrofits of existing commercial buildings (IBE, 2013b). In fact, the Commercial Building Energy Consumption Survey (CBECS) 2003 (EIA, 2006) indicates that over 70% of existing commercial buildings across the United States are more than twenty …


Optimal Design Of Sound Absorbing Systems With Microperforated Panels, Nicholas Nakjoo Kim Dec 2016

Optimal Design Of Sound Absorbing Systems With Microperforated Panels, Nicholas Nakjoo Kim

Open Access Dissertations

As the development of technology makes economic prosperity and life more convenient, people now desire a higher quality of life. This quality of life is based not only on the convenience in their life but also on clean and eco-friendly environments. To meet that requirement, much research is being performed in many areas of eco-friendly technology, such as renewable energy, biodegradable content, and batteries for electronic vehicles.

This tendency is also obvious in the acoustics area, where there are continuing attempts to replace fiber-glass sound absorbers with fiber-free materials. The combination of microperfoated panels (MPP) (one of the fiber-free sound …


Energy Localization And Heat Generation In Composite Energetic Systems Under High-Frequency Mechanical Excitation, Jesus O. Mares Dec 2016

Energy Localization And Heat Generation In Composite Energetic Systems Under High-Frequency Mechanical Excitation, Jesus O. Mares

Open Access Dissertations

In this work, the ability to use high frequency mechanical excitation to generate significant heating within plastic bonded explosives, as well as single energetic particles embedded within a viscoelastic binder, is studied. In this work, the fundamental mechanisms associated with the conversion of high-frequency mechanical excitation to heat as applied to these composite energetic systems are thoroughly investigated.

High-frequency contact excitation has been used to generate a significant amount of heat within samples of PBX 9501 and representative inert mock materials. Surface temperature rises on the order of 10 °C were observed at certain frequencies over a range from 50 …