Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electronic Theses and Dissertations

Discipline
Institution
Keyword
Publication Year
File Type

Articles 1 - 30 of 479

Full-Text Articles in Mechanical Engineering

Fluid Flow Analysis Of Diluted Evaporating American Whiskey Droplets., Martin J. Brown Vi Aug 2019

Fluid Flow Analysis Of Diluted Evaporating American Whiskey Droplets., Martin J. Brown Vi

Electronic Theses and Dissertations

The recent discovery of the unique structures, whiskey webs, formed when the evaporation of diluted American whiskey, has raised many questions as to the nature of the structures. Their formation process follows as such: (1) dilution of the whiskey to form nanoaggregates, (2) formation of a monolayer at the air-liquid interface, (3) chaotic ethanol evaporation caused monolayer collapse (via dynamic pressure), (4) bulk fluid evaporation caused monolayer collapse (via reduction of surface area), where the web-like structures reside on the surface, and finally, (5) web-like structures deposit on the substrate. The webs imaged via SEM had a striking resemblance to ...


Lithium Molybdate-Sulfur Battery., Ruchira Ravinath Dharmasena May 2019

Lithium Molybdate-Sulfur Battery., Ruchira Ravinath Dharmasena

Electronic Theses and Dissertations

Rechargeable energy storage systems play a vital role in today’s automobile industry with the emergence of electric vehicles (EVs). In order to meet the targets set by the department of energy (DOE), there is an immediate need of new battery chemistries with higher energy density than the current Li- ion technology. Lithium–sulfur (Li–S) batteries have attracted enormous attention in the energy-storage, due to their high specific energy density of 2600 Wh kg-1 and operational voltage of 2.0 V. Despite the promising electrochemical characteristics, Li-S batteries suffer from serious technical challenges such as dissolution of polysulfides ...


Vibration Reduction Of Mistuned Bladed Disks Via Piezoelectric-Based Resonance Frequency Detuning, Garrett Lopp May 2019

Vibration Reduction Of Mistuned Bladed Disks Via Piezoelectric-Based Resonance Frequency Detuning, Garrett Lopp

Electronic Theses and Dissertations

Recent trends in turbomachinery blade technology have led to increased use of monolithically constructed bladed disks (blisks). Although offering a wealth of performance benefits, this construction removes the blade-attachment interface present in the conventional design, thus unintentionally removing a source of friction-based damping needed to counteract large vibrations during resonance passages. This issue is further exacerbated in the presence of blade mistuning that arises from small imperfections from otherwise identical blades and are unavoidable as they originate from manufacturing tolerances and operational wear over the lifespan of the engine. Mistuning is known to induce vibration localization with large vibration amplitudes ...


Dynamic Behavior And Performance Of Different Types Of Multi-Effect Desalination Plants, Mohamed Abdelkareem May 2019

Dynamic Behavior And Performance Of Different Types Of Multi-Effect Desalination Plants, Mohamed Abdelkareem

Electronic Theses and Dissertations

Water and energy are two of the most vital resources for the socio-economic development and sustenance of humanity on earth. Desalination of seawater has been practiced for some decades and is a well-established means of water supply. However, this process consumes large amounts of energy and the global energy supply is also faced with some challenges. In this research, multi-effect desalination (MED) has been selected due to lower cost, lower operating temperature and efficient in terms of primary energy and electricity consumption compared to other thermal desalination systems. The motivation for this research is to address thermo-economics and dynamic behavior ...


Numerical Investigation Of Coalescence-Induced Self-Propelled Behavior Of Droplets On Non-Wetting Surfaces And Wedged Surfaces., Yan Chen May 2019

Numerical Investigation Of Coalescence-Induced Self-Propelled Behavior Of Droplets On Non-Wetting Surfaces And Wedged Surfaces., Yan Chen

Electronic Theses and Dissertations

When small drops coalesce on a superhydrophobic surface, the merged drop can jump away from the surface due to the surface energy released during the coalescence. This self-propelled behavior has been observed on various superhydrophobic surfaces and has potential applications in areas related to the heat and mass transfer, such as heat exchangers, anti-icing and anti-frost devices, thermal management and water harvesting. The jumping velocity model was obtained based on published experimental data and the balance of various energy terms described in previous studies. However, the self-propelled mechanism is still not fully understood. In this study, the self-propelled droplet phenomenon ...


Mechanical Properties Of Brittle Ceramics: Case Study Of Boron Rich Ceramics And Acropora Cervicornis Coral Skeleton, Alejandro Carrasco-Pena May 2019

Mechanical Properties Of Brittle Ceramics: Case Study Of Boron Rich Ceramics And Acropora Cervicornis Coral Skeleton, Alejandro Carrasco-Pena

Electronic Theses and Dissertations

Ceramics are ubiquitous in man-made and natural structures. Their mechanical properties highly depend on their composition, microstructure and level of defects in the bulk of the material, the latter affecting the integrity of the components; such is the case of boron-rich ceramics where large agglomerates create high stressed regions, or coral skeleton where porosity determines their strength against hydrodynamic forces present in the ocean tides. Therefore, studying the properties of ceramic materials using invasive and non-invasive methods helps in the understanding of the link between the properties and the performance of the structures. The aim of this research was to ...


Variable Fluid Flow Regimes Alter Endothelial Adherens Junctions And Tight Junctions, Dilshan Ranadewa May 2019

Variable Fluid Flow Regimes Alter Endothelial Adherens Junctions And Tight Junctions, Dilshan Ranadewa

Electronic Theses and Dissertations

Variable blood flow regimes influence a range of cellular properties ranging from cell orientation, shape, and permeability: all of which are dependent on endothelial cell-cell junctions. In fact, cell-cell junctions have shown to be an integral part of vascular homeostasis through the endothelium by allowing intercellular signaling and passage control through tight junctions (TJs), adherens junctions (AJs), and gap junctions (GJs). It was our objective to determine the structural response of both AJs and TJs under steady and oscillatory flow. Human brain microvascular endothelial cells (HBMECs) were cultured in a parallel plate flow chamber and exposed to separate trails of ...


Experimental Study On Transient Behavior Of Water And Nanofluid In Multiport Slab Minichannel Heat Exchangers, Shahram Fotowat Feb 2019

Experimental Study On Transient Behavior Of Water And Nanofluid In Multiport Slab Minichannel Heat Exchangers, Shahram Fotowat

Electronic Theses and Dissertations

Heat exchangers are essential components of many systems and their use is extended to include various industrial, chemical, and automotive applications. A dynamic response study of a heat exchanger is essential for better representation of its design, selection, and analysis as it operates in conjunction with other process equipment. This study aims to experimentally investigate the transient performance of compact heat exchangers. A wide-range well prepared experimental setup is designed and assembled to examine the transient behavior of various types of cross-flow liquid to air heat exchangers. This set up is capable of stepping up or down the temperatures and ...


Vortex Induced Convective Heat Transfer Augmentation, Junguo Wang Jan 2019

Vortex Induced Convective Heat Transfer Augmentation, Junguo Wang

Electronic Theses and Dissertations

Delta winglet is an effective means to passively augment heat convection from a hot surface such as a solar panel. The effects of an inclination angle on the flow downstream of the winglet were studied. A delta winglet with an aspect ratio (c/h) of 2 and an attack angle of 30 degrees was mounted on a flat plate to scrutinize the role of its inclination angle (90° and 120°) on the flow downstream. The inclined winglet was placed in a wind tunnel, and the flow was measured by the hotwire. The experiment shows the 120-degree-inclination-angle delta winglet can generate ...


Development Of A Neural Network-Based Object Detection For Multirotor Target Tracking, Spencer Harwood Jan 2019

Development Of A Neural Network-Based Object Detection For Multirotor Target Tracking, Spencer Harwood

Electronic Theses and Dissertations

Unmanned aerial vehicles (UAVs) have, for the past few decades, seen an increased popularity in industry and research centres. Despite this intense utilization by both markets there exists an active demand for the development of autonomous guidance, navigation, and control strategies. One need relates to the achievement of a high level of autonomy to identify and track a target object. An elective technique for this set of tasks is neural networks. In the development and study of these networks there is a distinct lack of substantive validation techniques to qualify network performances when implemented in a multirotor UAV. This thesis ...


The Effects Of 3d Printing Parameters And Surface Treatments On Convective Heat Transfer Performance, Lucas N. Pereira Jan 2019

The Effects Of 3d Printing Parameters And Surface Treatments On Convective Heat Transfer Performance, Lucas N. Pereira

Electronic Theses and Dissertations

Additive manufacturing technology and applications have quickly expanded in many industries over the last five years. As additive manufacturing is studied and refined, improvements in resolution and strength have helped propel further growth of the industry. This study focuses on an additive manufacturing technology called fused filament fabrication (FFF). FFF involves the extrusion and layer-by-layer deposition of a molten thermoplastic material to create the desired part. One potential new application of fused filament fabrication is the manufacture of heat exchangers and heat sinks. This study focuses on developing baseline experimental data related to convective heat transfer coefficients over surfaces of ...


Hydrogen Fuel Cell Gasket Handling And Sorting With Machine Vision Integrated Dual Arm Robot, Devin C. Fowler Jan 2019

Hydrogen Fuel Cell Gasket Handling And Sorting With Machine Vision Integrated Dual Arm Robot, Devin C. Fowler

Electronic Theses and Dissertations

Recently demonstrated robotic assembling technologies for fuel cell stacks used fuel cell components manually pre-arranged in stacks (presenters), all oriented in the same position. Identifying the original orientation of fuel cell components and loading them in stacks for a subsequent automated assembly process is a difficult, repetitive work cycle which if done manually, deceives the advantages offered by automated fabrication technologies of fuel cell components and by robotic assembly processes. We present an innovative robotic technology which enables the integration of automated fabrication processes of fuel cell components with robotic assembly of fuel cell stacks into a fully automated fuel ...


Shape Recovery Behavior Of Carbon Nanopaper Shape Memory Polymer Composite, Veli Bugra Ozdemir Jan 2019

Shape Recovery Behavior Of Carbon Nanopaper Shape Memory Polymer Composite, Veli Bugra Ozdemir

Electronic Theses and Dissertations

This thesis presents analytical, experimental and modeling studies of the shape recovery behavior of electrically activated Carbon Nanopaper (CNP) Shape Memory Polymer (SMP)composite. The composite structure studied consists of a CNP layer sandwiched by two SMP layers where the CNP layer acts as a flexible electrical heater when a voltage difference is applied. The behavior of CNP/SMP composite presents a coupled electrical - thermal - structural problem. The governing equations for the multiphysics behavior are derived. Derived parameters as a result of multiphysics analysis and effects of these parameters on the shape recovery behavior are investigated. The mechanical properties of ...


Investigation Of Flow Field Structures In A Rectangular Channel With A Pin Fin Array, Patrick Tran Jan 2019

Investigation Of Flow Field Structures In A Rectangular Channel With A Pin Fin Array, Patrick Tran

Electronic Theses and Dissertations

Pin fin arrays are commonly found in heat exchangers, turbine blades, and electronic heat sinks. Fin arrays are extended surfaces that are used as turbulence promoters by inducing horseshoe vortex (HSV) and von Karman vortex (KV) structures. The horseshoe vortex are primarily studied in the leading edge of the blunt body, whereas the KV are formed in the trailing side. This study presents an experimental investigation of flow field structures and pressure loss on staggered pin fin array in the wake region, where KV are dominate. These flow structures increase the local levels turbulence and generate eddies that promote flow ...


A Study Of Several Applications Of Parallel Computing In The Sciences Using Petsc, Nicholas Stegmeier Jan 2019

A Study Of Several Applications Of Parallel Computing In The Sciences Using Petsc, Nicholas Stegmeier

Electronic Theses and Dissertations

The importance of computing in the natural sciences continues to grow as scientists strive to analyze complex phenomena. The dynamics of turbulence, astrophysics simulations, and climate change are just a few examples where computing is critical. These problems are computationally intractable on all computing platforms except supercomputers, necessitating the continued development of efficient algorithms and methodologies in parallel computing. This thesis investigates the use of parallel computing and mathematical modeling in the natural sciences through several applications, namely computational fluid dynamics for impinging jets in mechanical engineering, simulation of biofilms in an aqueous environment in mathematical biology, and the solution ...


Quantifying The Performance Of The Protodune Single Phase Neutrino Detector Using Computational Fluid Dynamics, Dillon Pedersen Jan 2019

Quantifying The Performance Of The Protodune Single Phase Neutrino Detector Using Computational Fluid Dynamics, Dillon Pedersen

Electronic Theses and Dissertations

The goal of this research is to provide scientifically-valid computationally generated data of the flow, thermal, and impurity data of the ProtoDUNE single phase detector. Results are compared and validated against an actual detector that is currently being utilized to collect temperature and impurity data. This research will investigate the flows inside these detection chambers using computational fluid dynamics to find approximate solutions to the governing equations of fluid mechanics. Impurity and flow data will allow researchers to determine if results collected are being obstructed by high levels of impurity. Novel approaches have been developed to strike a balance between ...


3d Printed Bioreactor With Optimized Stimulations For Ex-Vivo Bone Tissue Culture, Anirban Chakraborty Jan 2019

3d Printed Bioreactor With Optimized Stimulations For Ex-Vivo Bone Tissue Culture, Anirban Chakraborty

Electronic Theses and Dissertations

Motivation: Long term tissue survivability ex-vivo can greatly facilitate research on the influence of external stimulus (loading, radiation, microgravity) on the tissue, including mechanisms of disease transmission and subsequent drug discoveries. Bioreactors (used to culture living tissue ex-vivo) can be a valuable tool to study cell activity during physiological processes by mimicking their in-vivo native 3D environment.
Objective Statement: We have developed a compact, 3D printed bioreactor equipped with both continuous flow-perfusion and dynamic mechanical-loading stimulations, capable of maintaining ex-vivo viability of swine cancellous bone cores over a long period. Qualitative study of the cultured cores (in terms of material ...


Synthesis And Processing Of Nanocapsules Of Single And Multiple Cancer Drugs For Targeted Cancer Therapy, Md Mahmudul Hasan Jan 2019

Synthesis And Processing Of Nanocapsules Of Single And Multiple Cancer Drugs For Targeted Cancer Therapy, Md Mahmudul Hasan

Electronic Theses and Dissertations

Nanonization and encapsulation of cancer drug has been an effective way of making the drug injectable for EPR based passive targeted delivery. When cancer drugs are subjected to electrospray with high voltage like 30-45kV, it forms drug nanocrystal, which has same efficacy as the normal drug. UV-Vis is used to detect the presence of drug in the sample and later on, drug release pattern over the day is found through UV-Vis as well. The effect of spraying parameter on morphology of nanocrystals are investigated using Scanning Electron Microscope (SEM). On top of that, encapsulation of chemo drug into biocompatible polymer ...


Experimental And Numerical Investigation Of A Novel Adsorption Bed Design For Cooling Applications, Ramy H. Mohammed Jan 2019

Experimental And Numerical Investigation Of A Novel Adsorption Bed Design For Cooling Applications, Ramy H. Mohammed

Electronic Theses and Dissertations

A global challenge is to develop environmentally friendly, affordable, compact and sustainable technologies to provide heating and cooling power. Adsorption cooling (AC) technology is one of the most promising ways to solve the environmental issues and cut down the energy consumption related to the traditional air conditioning and refrigeration systems. However, AC systems still suffer from poor heat and mass transfer inside the adsorption bed, which is the main obstacle to commercialization of adsorption cooling units. The main goal of this study is designing an efficient adsorption cooling cycle. In this research work, an in-depth scaling analysis of heat and ...


Fluid Flow Characteristics Of A Co-Flow Fluidic Slot Jet Thrust Augmentation Propulsion System, Brian Garrett Jan 2019

Fluid Flow Characteristics Of A Co-Flow Fluidic Slot Jet Thrust Augmentation Propulsion System, Brian Garrett

Electronic Theses and Dissertations

The UAV industry is booming with investments in research and development on improving UAV systems in order to increase applications and reduce costs of the use of these machines. Current UAV machines are developed according to the quadcopter design which has a rotary propulsion system which provides the lift needed for the aerial vehicles. This design has some flaws; namely safety concerns and noise/vibration production both of which come from the rotary propulsion system. As such, a novel propulsion system using slip stream air passed through high performance slot jets is proposed and analysis of the fluid characteristics is ...


Modeling And Transient Simulation Of A Fully Integrated Multi-Pressure Heat Recovery Steam Generator Using Siemens T3000, Jonathan Mcconnell Jan 2019

Modeling And Transient Simulation Of A Fully Integrated Multi-Pressure Heat Recovery Steam Generator Using Siemens T3000, Jonathan Mcconnell

Electronic Theses and Dissertations

The focus of this research is on the transient thermodynamic properties and dynamic behavior of a Heat Recovery Steam Generator (HRSG). An HRSG is a crossflow heat exchanger designed for the extraction of energy from the hot exhaust gas of a traditional power plant through boiling induced phase change. Superheated steam is sent through a turbine to generate additional power, raising the overall efficiency of a power plant. The addition of renewable energies and the evolution of smart grids have brought forth a necessity to gain a comprehensive understanding of transient behavior within an HRSG in order to efficiently manage ...


Cavitation And Heat Transfer Over Micro Pin Fins, Arash Nayebzadeh Jan 2019

Cavitation And Heat Transfer Over Micro Pin Fins, Arash Nayebzadeh

Electronic Theses and Dissertations

With the dramatic increase in the usage of compact yet more powerful electronic devices, advanced cooling technologies are required to maintain delicate electronic components below their maximum allowable temperatures and prevent them from failure. One solution is to use innovative pin finned heat sinks. This research is centered on the evaluation of hydrodynamic cavitation properties downstream pin fins and extended toward single-phase heat transfer enhancement of array of pin fins in microchannel. In this work, transparent micro-devices capable of local wall temperature measurements were micro fabricated and tested. Various experimental methods, numerical modeling and advanced data processing techniques are presented ...


Modeling And Study Of Thermal Effects On Battery Pack Using Phase Change Materials, Umang Selokar Jan 2019

Modeling And Study Of Thermal Effects On Battery Pack Using Phase Change Materials, Umang Selokar

Electronic Theses and Dissertations

The scope of the current research is to reduce the temperature distribution area in Li-ion cell and the battery pack with respect to time in battery design, using CFD technology (Computational Fluid Dynamics) in ANSYS fluent. A 3D model was design in CAD software (CATIA) and analyzed in ANSYS fluent to study the thermal behavior of the designed battery pack. An analytical thermal model was generated to evaluate the heat generation rate passing throughout the battery pack. The battery pack were analyzed and simulated on two different designs. One battery design is modeled with and without insulation (superwool EST compression ...


Modeling And Simulation Of The Thermoforming Process In Thermoplastic-Matrix Composite Materials, Philip M. Bean Dec 2018

Modeling And Simulation Of The Thermoforming Process In Thermoplastic-Matrix Composite Materials, Philip M. Bean

Electronic Theses and Dissertations

Thermoplastic-matrix composite materials have unique advantages over traditional thermosets including faster processing, improved fracture toughness, and recyclability. These and other benefits have caused increasing interest in the use of these materials in both aerospace and automotive industries. Due to the differences in behavior, these materials require a different type of manufacturing process to thermoset matrix composites. This manufacturing process generally involves using pre manufactured tape-layers. These layers, containing both thermoplastic-matrix and fiber-reinforcement, are aligned to the desired orientation, and stacked up into a “tailored blank” using an automated tape layup machine. They are then heated to the thermoplastic melting temperature ...


Process-Property-Microstructure Relationships In Laser-Powder Bed Fusion Of 420 Stainless Steel., Subrata Deb Nath Dec 2018

Process-Property-Microstructure Relationships In Laser-Powder Bed Fusion Of 420 Stainless Steel., Subrata Deb Nath

Electronic Theses and Dissertations

Laser-powder bed fusion (L-PBF) is an additive manufacturing technique for fabricating metal components with complex design and customized features. However, only a limited number of materials have been widely studied using L-PBF. AISI 420 stainless steel, an alloy with a useful combination of high strength, hardness, and corrosion resistance, is an example of one such material where few L-PBF investigations have emerged to date. In this dissertation, L-PBF experiments were conducted using 420 stainless steel powders to understand the effects of chemical composition, particle size distribution and processing parameters on ensuing physical, mechanical and corrosion properties and microstructure in comparison ...


Low Temperature Desiccants In Atmospheric Water Generation., Sunil Gupta Dec 2018

Low Temperature Desiccants In Atmospheric Water Generation., Sunil Gupta

Electronic Theses and Dissertations

Surging global water demand as well as changes to weather patterns and over exploitation of natural water sources, such as ground water, has made potable water a critical resource in many parts of the World already – one rapidly heading towards a crisis situation. Desalination has been adopted as a solution – this is however energy intensive and impractical for most of the developing countries - those most in need of water. A renewable source of energy is solar thermal and solar photovoltaic. A plentiful source of water is the humidity in the atmosphere. This research is to push the envelope in pairing ...


Performance Test And Numerical Simulation Of An Adjustable Implant For Treating Vocal Fold Paralysis, Hai Zi Aug 2018

Performance Test And Numerical Simulation Of An Adjustable Implant For Treating Vocal Fold Paralysis, Hai Zi

Electronic Theses and Dissertations

Unilateral vocal fold paralysis (UVFP) is one of the most common laryngeal diseases that affect human voice and speech production. It often causes incomplete glottal closure, resulting in voice symptoms including hoarseness, voice fatigue and increased voice effort. One common treatment of UVFP is Thyroplasty Type I, which uses a thyroplasty implant to medialize the paralyzed vocal fold and restore the normal vibration of the vocal fold. However, the surgical outcome is extremely sensitive to the size and shape of the implant. Currently, modifications in the implant size and shape rely upon surgical intuition and experience. The level of voice ...


Microstructure And Mechanical Properties Of Selective Laser Melted Superalloy Inconel 625., Md Ashabul Anam Aug 2018

Microstructure And Mechanical Properties Of Selective Laser Melted Superalloy Inconel 625., Md Ashabul Anam

Electronic Theses and Dissertations

Selective Laser Melting (SLM), a powder based Additive Manufacturing (AM) process, has gained considerable attention in the aerospace, biomedical and automotive industries due to its many potential benefits, such as, capability of fabricating complex three-dimensional components, shortened design to product time, reduction in process steps, component mass reduction and material flexibility. This process uses metallic powder and is capable of fabricating complex structures with excellent microstructure which make SLM not only an improvement over other manufacturing processes but also innovative material processing technology. Inconel 625, a nickel-based super alloy is widely popular in aerospace, chemical and nuclear industries. This alloy ...


High Dynamic Range Optical Devices And Applications., Elijah Robert Jensen Aug 2018

High Dynamic Range Optical Devices And Applications., Elijah Robert Jensen

Electronic Theses and Dissertations

Much of what we know about fundamental physical law and the universe derives from observations and measurements using optical methods. The passive use of the electromagnetic spectrum can be the best way of studying physical phenomenon in general with minimal disturbance of the system in the process. While for many applications ambient visible light is sufficient, light outside of the visible range may convey more information. The signals of interest are also often a small fraction of the background, and their changes occur on time scales so quickly that they are visually imperceptible. This thesis reports techniques and technologies developed ...


Selecting The Most Effective Energy Modeling Tool Based On A Project Requirement, Sodiq Akande Aug 2018

Selecting The Most Effective Energy Modeling Tool Based On A Project Requirement, Sodiq Akande

Electronic Theses and Dissertations

Building energy usage can be derived and controlled by performing building energy modeling. BEM can be performed using numerous software tools such as DesignBuilder, OpenStudio, EnergyPlus etc. These modeling tools can be sorted into three different modeling categories: Black-box, Gray-box and White-box. It is important for a modeler to be able to quickly select the proper tool from the proper category to meet the need of the project. To validate the method of categorizing tools, the three models generated using tools from each category and the modeling outputs required were compared. Each model was designed to estimate the amount of ...