Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Numerical Analysis and Computation

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 31 - 60 of 111

Full-Text Articles in Mechanical Engineering

A Physics-Based Approach To Modeling Wildland Fire Spread Through Porous Fuel Beds, Tingting Tang Jan 2017

A Physics-Based Approach To Modeling Wildland Fire Spread Through Porous Fuel Beds, Tingting Tang

Theses and Dissertations--Mechanical Engineering

Wildfires are becoming increasingly erratic nowadays at least in part because of climate change. CFD (computational fluid dynamics)-based models with the potential of simulating extreme behaviors are gaining increasing attention as a means to predict such behavior in order to aid firefighting efforts. This dissertation describes a wildfire model based on the current understanding of wildfire physics. The model includes physics of turbulence, inhomogeneous porous fuel beds, heat release, ignition, and firebrands. A discrete dynamical system for flow in porous media is derived and incorporated into the subgrid-scale model for synthetic-velocity large-eddy simulation (LES), and a general porosity-permeability model is …


Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook Dec 2016

Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook

Electronic Theses and Dissertations

This dissertation is concerned with the development of robust numerical solution procedures for the generalized micromechanical analysis of linear and nonlinear constitutive behavior in heterogeneous materials. Although the methods developed are applicable in many engineering, geological, and materials science fields, three main areas are explored in this work. First, a numerical methodology is presented for the thermomechanical analysis of heterogeneous materials with a special focus on real polycrystalline microstructures obtained using electron backscatter diffraction techniques. Asymptotic expansion homogenization and finite element analysis are employed for micromechanical analysis of polycrystalline materials. Effective thermoelastic properties of polycrystalline materials are determined and compared …


Multi-Dome Forming Of A Ti–Al–Mn Alloy, Sergey Aksenov, Aleksey Kolesnikov, Ivan Zakhariev Oct 2016

Multi-Dome Forming Of A Ti–Al–Mn Alloy, Sergey Aksenov, Aleksey Kolesnikov, Ivan Zakhariev

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


A Fast Model For The Simulation Of External Gear Pumps, Zechao Lu, Xinran Zhao, Andrea Vacca Aug 2016

A Fast Model For The Simulation Of External Gear Pumps, Zechao Lu, Xinran Zhao, Andrea Vacca

The Summer Undergraduate Research Fellowship (SURF) Symposium

External gear pump is an important category of positive displacement fluid machines used to perform the mechanical–hydraulic energy conversions in many fluid power applications. An efficient numerical simulation program is needed to simulate the system in order to provide a direction for design purpose. The model consists of a lumped parameter fluid dynamic model and a model that simulates the radial micro-motions of the gear’s axes of rotation. The system consists of a set of ordinary differential equations related to the conservation on mass of the internal control volumes of the pump, which are given by the tooth space volumes …


Cfd Model For Ventilation In Broiler Holding Sheds, Christian Heymsfield May 2016

Cfd Model For Ventilation In Broiler Holding Sheds, Christian Heymsfield

Biological and Agricultural Engineering Undergraduate Honors Theses

Broiler production in Arkansas was valued at over $3.6 billion in 2013 (University of Arkansas Extension of Agriculture). Consequently, improvement in any phase of the production process can have significant economic impact and animal welfare implications. From the time poultry leave the farm and until they are slaughtered, they can be exposed to harsh environmental conditions, both in winter and in summer. After road transportation, birds are left to wait in holding sheds once they arrive at the processing plant, for periods of approximately 30 minutes to two hours. This project was interested in this holding shed waiting time during …


Procesy Cieplne I Aparaty (Lab), Wojciech M. Budzianowski Jan 2016

Procesy Cieplne I Aparaty (Lab), Wojciech M. Budzianowski

Wojciech Budzianowski

-


Effect Of Spalled Particles Thermal Degradation On A Hypersonic Flow Field Environment, Raghava S. C. Davuluri, Huaibao Zhang, Alexandre Martin Jan 2016

Effect Of Spalled Particles Thermal Degradation On A Hypersonic Flow Field Environment, Raghava S. C. Davuluri, Huaibao Zhang, Alexandre Martin

Mechanical Engineering Faculty Publications

Two-way coupling is performed between a spallation code and a hypersonic aerothermodynamics CFD solver to evaluate the effect of spalled particles on the flow field. Time accurate solutions are computed in argon and air flow fields. A single particle simulations and multiple particles simulations are performed and studied. The results show that the carbon vapor released by spalled particles tend to change the composition of the flow field, particularly the upstream region of the shock.


Inżynieria Chemiczna Lab., Wojciech M. Budzianowski Jan 2016

Inżynieria Chemiczna Lab., Wojciech M. Budzianowski

Wojciech Budzianowski

-


Methodology For Analyzing Epoxy-Cnt Phononic Crystals For Wave Attenuation And Guiding, Madhu Kolati Jan 2016

Methodology For Analyzing Epoxy-Cnt Phononic Crystals For Wave Attenuation And Guiding, Madhu Kolati

Dissertations, Master's Theses and Master's Reports

Phononic crystals (PhnCs) control, direct and manipulate sound waves to achieve wave guiding and attenuation. This dissertation presents methodology for analyzing nanotube materials based phononic crystals to achieve control over sound, vibration and stress mitigation. Much of the analytical work presented is in identifying frequency band gaps in which sound or vibration cannot propagate through these PhnCs. Wave attenuation and mitigation analysis is demonstrated using finite element simulation. Engineering principles from current research areas of solid mechanics, solid-state physics, elasto-dynamics, mechanical vibrations and acoustics are employed for the methodology. A considerable effort is put to show that these PhnCs can …


Computational Simulation Of Mass Transport And Energy Transfer In The Microbial Fuel Cell System, Shiqi Ou Dec 2015

Computational Simulation Of Mass Transport And Energy Transfer In The Microbial Fuel Cell System, Shiqi Ou

Doctoral Dissertations

This doctoral dissertation introduces the research in the computational modeling and simulation for the microbial fuel cell (MFC) system which is a bio-electrochemical system that drives a current by using bacteria and mimicking bacterial interactions found in nature. The numerical methods, research approaches and simulation comparison with the experiments in the microbial fuel cells are described; the analysis and evaluation for the model methods and results that I have achieved are presented in this dissertation.

The development of the renewable energy has been a hot topic, and scientists have been focusing on the microbial fuel cell, which is an environmentally-friendly …


Development Of A Two-Fluid Drag Law For Clustered Particles Using Direct Numerical Simulation And Validation Through Experiments, Ahmadreza Abbasi Baharanchi Nov 2015

Development Of A Two-Fluid Drag Law For Clustered Particles Using Direct Numerical Simulation And Validation Through Experiments, Ahmadreza Abbasi Baharanchi

FIU Electronic Theses and Dissertations

This dissertation focused on development and utilization of numerical and experimental approaches to improve the CFD modeling of fluidization flow of cohesive micron size particles. The specific objectives of this research were: (1) Developing a cluster prediction mechanism applicable to Two-Fluid Modeling (TFM) of gas-solid systems (2) Developing more accurate drag models for Two-Fluid Modeling (TFM) of gas-solid fluidization flow with the presence of cohesive interparticle forces (3) using the developed model to explore the improvement of accuracy of TFM in simulation of fluidization flow of cohesive powders (4) Understanding the causes and influential factor which led to improvements and …


Numerical Solutions Of Generalized Burgers' Equations For Some Incompressible Non-Newtonian Fluids, Yupeng Shu Aug 2015

Numerical Solutions Of Generalized Burgers' Equations For Some Incompressible Non-Newtonian Fluids, Yupeng Shu

University of New Orleans Theses and Dissertations

The author presents some generalized Burgers' equations for incompressible and isothermal flow of viscous non-Newtonian fluids based on the Cross model, the Carreau model, and the Power-Law model and some simple assumptions on the flows. The author numerically solves the traveling wave equations for the Cross model, the Carreau model, the Power-Law model by using industrial data. The author proves existence and uniqueness of solutions to the traveling wave equations of each of the three models. The author also provides numerical estimates of the shock thickness as well as maximum strain $\varepsilon_{11}$ for each of the fluids.


On The Selection Of A Good Shape Parameter For Rbf Approximation And Its Application For Solving Pdes, Lei-Hsin Kuo Aug 2015

On The Selection Of A Good Shape Parameter For Rbf Approximation And Its Application For Solving Pdes, Lei-Hsin Kuo

Dissertations

Meshless methods utilizing Radial Basis Functions~(RBFs) are a numerical method that require no mesh connections within the computational domain. They are useful for solving numerous real-world engineering problems. Over the past decades, after the 1970s, several RBFs have been developed and successfully applied to recover unknown functions and to solve Partial Differential Equations (PDEs).
However, some RBFs, such as Multiquadratic (MQ), Gaussian (GA), and Matern functions, contain a free variable, the shape parameter, c. Because c exerts a strong influence on the accuracy of numerical solutions, much effort has been devoted to developing methods for determining shape parameters which provide …


A Contribution Toward Better Understanding Of Overbanking Tendency In Fixed-Wing Aircraft, Nihad E. Daidzic Feb 2015

A Contribution Toward Better Understanding Of Overbanking Tendency In Fixed-Wing Aircraft, Nihad E. Daidzic

Journal of Aviation Technology and Engineering

The phenomenon of overbanking tendency for a rigid-body, fixed-wing aircraft is investigated. Overbanking tendency is defined as a spontaneous, unbalanced rolling moment that keeps increasing an airplane’s bank angle in steep turns and must be arrested by opposite aileron action. As stated by the Federal Aviation Administration, the overbanking tendency may lead to a loss of control, especially in instrument meteorological conditions. It was found in this study that the speed differential over wing halves in horizontal turns indeed creates a rolling moment that achieves maximum values for bank angles between 45 and 55 degrees. However, this induced rolling moment …


Inżynieria Chemiczna Ćw., Wojciech M. Budzianowski Jan 2015

Inżynieria Chemiczna Ćw., Wojciech M. Budzianowski

Wojciech Budzianowski

-


Tematyka Prac Doktorskich, Wojciech M. Budzianowski Jan 2015

Tematyka Prac Doktorskich, Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


The Simulation & Evaluation Of Surge Hazard Using A Response Surface Method In The New York Bight, Michael H. Bredesen Jan 2015

The Simulation & Evaluation Of Surge Hazard Using A Response Surface Method In The New York Bight, Michael H. Bredesen

UNF Graduate Theses and Dissertations

Atmospheric features, such as tropical cyclones, act as a driving mechanism for many of the major hazards affecting coastal areas around the world. Accurate and efficient quantification of tropical cyclone surge hazard is essential to the development of resilient coastal communities, particularly given continued sea level trend concerns. Recent major tropical cyclones that have impacted the northeastern portion of the United States have resulted in devastating flooding in New York City, the most densely populated city in the US. As a part of national effort to re-evaluate coastal inundation hazards, the Federal Emergency Management Agency used the Joint Probability Method …


Zespół Energii Odnawialnej I Zrównoważonego Rozwoju (Eozr), Wojciech M. Budzianowski Dec 2014

Zespół Energii Odnawialnej I Zrównoważonego Rozwoju (Eozr), Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Termodynamika Procesowa I Techniczna Lab., Wojciech M. Budzianowski Jan 2014

Termodynamika Procesowa I Techniczna Lab., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Tematyka Prac Dyplomowych Dla Studentów Wydziału Mechaniczno-Energetycznego Pwr., Wojciech M. Budzianowski Jan 2014

Tematyka Prac Dyplomowych Dla Studentów Wydziału Mechaniczno-Energetycznego Pwr., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Tematyka Prac Dyplomowych Dla Studentów Wydziału Chemicznego Pwr., Wojciech M. Budzianowski Jan 2014

Tematyka Prac Dyplomowych Dla Studentów Wydziału Chemicznego Pwr., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Mechanika Płynów Lab., Wojciech M. Budzianowski Jan 2014

Mechanika Płynów Lab., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


A Study On The Integration Of A Novel Absorption Chiller Into A Microscale Combined Cooling, Heating, And Power (Micro-Cchp) System, Scott J. Richard Dec 2013

A Study On The Integration Of A Novel Absorption Chiller Into A Microscale Combined Cooling, Heating, And Power (Micro-Cchp) System, Scott J. Richard

University of New Orleans Theses and Dissertations

This study explores the application of micro-CCHP systems that utilize a 30 kW gas microturbine and an absorption chiller. Engineering Equation Solver (EES) is used to model a novel single-effect and double-effect water-lithium bromide absorption chiller that integrates the heat recovery unit and cooling tower of a conventional CCHP system into the chiller’s design, reducing the cost and footprint of the system. The results of the EES model are used to perform heat and material balances for the micro-CCHP systems employing the novel integrated chillers, and energy budgets for these systems are developed. While the thermal performance of existing CCHP …


Characterization Of The Drilling Via The Vibration Augmenter Of Rotary-Drills And Sound Signal Processing Of Impacted Pipe As A Potential Water Height Assessment Tool, Nicholas Morris Aug 2013

Characterization Of The Drilling Via The Vibration Augmenter Of Rotary-Drills And Sound Signal Processing Of Impacted Pipe As A Potential Water Height Assessment Tool, Nicholas Morris

STAR Program Research Presentations

The focus of the internship has been on two topics: a) Characterize the drilling performance of a novel percussive augmenter – this drill was developed by the JPL’s Advanced Technologies Group and its performance was characterized; and b) Examine the feasibility of striking a pipe as a means of assessing the water height inside the pipe. The purpose of this investigation is to examine the possibility of using a simple method of applying impacts to a pipe wall and determining the water height from the sonic characteristic differences including damping, resonance frequencies, etc. Due to multiple variables that are relevant …


Mechaniczny Rozdział Faz Proj., Wojciech M. Budzianowski Jan 2013

Mechaniczny Rozdział Faz Proj., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Challenges And Prospects Of Processes Utilising Carbonic Anhydrase For Co2 Separation, Patrycja Szeligiewicz, Wojciech M. Budzianowski Jan 2013

Challenges And Prospects Of Processes Utilising Carbonic Anhydrase For Co2 Separation, Patrycja Szeligiewicz, Wojciech M. Budzianowski

Wojciech Budzianowski

This article provides an analysis of processes for separation CO2 by using carbonic anhydrase enzyme with particular emphasis on reactive-membrane solutions. Three available processes are characterised. Main challenges and prospects are given. It is found that in view of numerous challenges practical applications of these processes will be difficult in near future. Further research is therefore needed for improving existing processes through finding methods for eliminating their main drawbacks such as short lifetime of carbonic anhydrase or low resistance of reactive membrane systems to impurities contained in flue gases from power plants.


Determination Of Kinetic Parameters From The Thermogravimetric Data Set Of Biomass Samples, Karol Postawa, Wojciech M. Budzianowski Dec 2012

Determination Of Kinetic Parameters From The Thermogravimetric Data Set Of Biomass Samples, Karol Postawa, Wojciech M. Budzianowski

Wojciech Budzianowski

This article describes methods of the determination of kinetic parameters from the thermogravimetric data set of biomass samples. It presents the methodology of the research, description of the needed equipment, and the method of analysis of thermogravimetric data. It describes both methodology of obtaining quantitative data such as kinetic parameters as well as of obtaining qualitative data like the composition of biomass. The study is focused mainly on plant biomass because it is easy in harvesting and preparation. Methodology is shown on the sample containing corn stover which is subsequently pyrolysed. The investigated sample show the kinetic of first order …


Validation Of Weak Form Thermal Analysis Algorithms Supporting Thermal Signature Generation, Elton Lewis Freeman Dec 2012

Validation Of Weak Form Thermal Analysis Algorithms Supporting Thermal Signature Generation, Elton Lewis Freeman

Masters Theses

Extremization of a weak form for the continuum energy conservation principle differential equation naturally implements fluid convection and radiation as flux Robin boundary conditions associated with unsteady heat transfer. Combining a spatial semi-discretization via finite element trial space basis functions with time-accurate integration generates a totally node-based algebraic statement for computing. Closure for gray body radiation is a newly derived node-based radiosity formulation generating piecewise discontinuous solutions, while that for natural-forced-mixed convection heat transfer is extracted from the literature. Algorithm performance, mathematically predicted by asymptotic convergence theory, is subsequently validated with data obtained in 24 hour diurnal field experiments for …


Trajectory Generation In High-Speed, High-Precision Micromilling Using Subdivision Surfaces, Athulan Vijayaraghavan, Angela Sodemann, Aaron Hoover, J. Mayor, David Dornfeld Jul 2012

Trajectory Generation In High-Speed, High-Precision Micromilling Using Subdivision Surfaces, Athulan Vijayaraghavan, Angela Sodemann, Aaron Hoover, J. Mayor, David Dornfeld

Aaron M. Hoover

Motion control in high-speed micromilling processes requires fast, accurate following of a specified curvilinear path. The accuracy with which the path can be followed is determined by the speed at which individual trajectories can be generated and sent to the control system. The time required to generate the trajectory is dependent on the representations used for the curvilinear trajectory path. In this study, we introduce the use of subdivision curves as a method for generating high-speed micromilling trajectories. Subdivision curves are discretized curves which are specified as a series of recursive refinements of a coarse mesh. By applying these recursive …


Controlling Nanoparticles Formation In Molten Metallic Bilayers By Pulsed-Laser Interference Heating, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman Jan 2012

Controlling Nanoparticles Formation In Molten Metallic Bilayers By Pulsed-Laser Interference Heating, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman

Mathematics Faculty Publications

The impacts of the two-beam interference heating on the number of core-shell and embedded nanoparticles and on nanostructure coarsening are studied numerically based on the non-linear dynamical model for dewetting of the pulsed-laser irradiated, thin (< 20 nm) metallic bilayers. The model incorporates thermocapillary forces and disjoining pressures, and assumes dewetting from the optically transparent substrate atop of the reflective support layer, which results in the complicated dependence of light reflectivity and absorption on the thicknesses of the layers. Stabilizing thermocapillary effect is due to the local thickness-dependent, steady- state temperature profile in the liquid, which is derived based on the mean substrate temperature estimated from the elaborate thermal model of transient heating and melting/freezing. Linear stability analysis of the model equations set for Ag/Co bilayer predicts the dewetting length scales in the qualitative agreement with experiment.