Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

A Meshless Approach To Computational Pharmacokinetics, Anthony Matthew Khoury Apr 2022

A Meshless Approach To Computational Pharmacokinetics, Anthony Matthew Khoury

Doctoral Dissertations and Master's Theses

The meshless method is an incredibly powerful technique for solving a variety of problems with unparalleled accuracy and efficiency. The pharmacokinetic problem of transdermal drug delivery (TDDD) is one such topic and is of significant complexity. The locally collocated meshless method (LCMM) is developed in solution to this topic. First, the meshless method is formulated to model this transport phenomenon and is then validated against an analytical solution of a pharmacokinetic problem set, to demonstrate this accuracy and efficiency. The analytical solution provides a locus by which convergence behavior are evaluated, demonstrating the super convergence of the locally collocated meshless …


Singular Superposition/Boundary Element Method For Reconstruction Of Multi-Dimensional Heat Flux Distributions With Application To Film Cooling Holes, Mahmood Silieti, Eduardo Divo, Alain J. Kassab Jan 2009

Singular Superposition/Boundary Element Method For Reconstruction Of Multi-Dimensional Heat Flux Distributions With Application To Film Cooling Holes, Mahmood Silieti, Eduardo Divo, Alain J. Kassab

Publications

A hybrid singularity superposition/boundary element-based inverse problem method for the reconstruction of multi-dimensional heat flux distributions is developed. Cauchy conditions are imposed at exposed surfaces that are readily reached for measurements while convective boundary conditions are unknown at surfaces that are not amenable to measurements such as the walls of the cooling holes. The purpose of the inverse analysis is to determine the heat flux distribution along cooling hole surfaces. This is accomplished in an iterative process by distributing a set of singularities (sinks) inside the physical boundaries of the cooling hole (usually along cooling hole centerline) with a given …


Transient Non-Linear Heat Conduction Solution By A Dual Reciprocity Boundary Element Method With An Effective Posteriori Error Estimator, Eduardo Divo, Alain J. Kassab Jan 2005

Transient Non-Linear Heat Conduction Solution By A Dual Reciprocity Boundary Element Method With An Effective Posteriori Error Estimator, Eduardo Divo, Alain J. Kassab

Publications

A Dual Reciprocity Boundary Element Method is formulated to solve non-linear heat conduction problems. The approach is based on using the Kirchhoff transform along with lagging of the effective non-linear thermal diffusivity. A posteriori error estimate is used to provide effective estimates of the temporal and spatial error. A numerical example is used to demonstrate the approach.