Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Numerical Analysis and Computation

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 61 - 90 of 111

Full-Text Articles in Mechanical Engineering

Ogólnotechniczne Podstawy Biotechnologii Z Elementami Grafiki Inżynierskiej Ćw., Wojciech M. Budzianowski Jan 2012

Ogólnotechniczne Podstawy Biotechnologii Z Elementami Grafiki Inżynierskiej Ćw., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Materiały Odstresowujące, Wojciech M. Budzianowski Jan 2012

Materiały Odstresowujące, Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Controlling Nanoparticles Formation In Molten Metallic Bilayers By Pulsed-Laser Interference Heating, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman Jan 2012

Controlling Nanoparticles Formation In Molten Metallic Bilayers By Pulsed-Laser Interference Heating, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman

Mikhail Khenner

The impacts of the two-beam interference heating on the number of core-shell and embedded nanoparticles and on nanostructure coarsening are studied numerically based on the non-linear dynamical model for dewetting of the pulsed-laser irradiated, thin (< 20 nm) metallic bilayers. The model incorporates thermocapillary forces and disjoining pressures, and assumes dewetting from the optically transparent substrate atop of the reflective support layer, which results in the complicated dependence of light reflectivity and absorption on the thicknesses of the layers. Stabilizing thermocapillary effect is due to the local thickness-dependent, steady- state temperature profile in the liquid, which is derived based on the mean substrate temperature estimated from the elaborate thermal model of transient heating and melting/freezing. Linear stability analysis of the model equations set for Ag/Co bilayer predicts the dewetting length scales in the qualitative agreement with experiment.


Hydrogen Production From Biogas By Oxy-Reforming: Reaction System Analysis, Aleksandra Terlecka, Wojciech M. Budzianowski Dec 2011

Hydrogen Production From Biogas By Oxy-Reforming: Reaction System Analysis, Aleksandra Terlecka, Wojciech M. Budzianowski

Wojciech Budzianowski

Oxy-reforming is emerging as an interesting alternative to conventional methods of hydrogen generation. The current article characterises this process through analysis of individual reactions: SMR (steam methane reforming), WGS (water gas shift) and CPO (catalytic partial oxidation). Analyses relate to optimisation of thermal conditions thus enabling cost-effectivenes of the process.


Formation Of Organized Nanostructures From Unstable Bilayers Of Thin Metallic Liquids, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman Dec 2011

Formation Of Organized Nanostructures From Unstable Bilayers Of Thin Metallic Liquids, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman

Mathematics Faculty Publications

Dewetting of pulsed-laser irradiated, thin (< 20 nm), optically reflective metallic bilayers on an optically transparent substrate with a reflective support layer is studied within the lubrication equations model. A steady-state bilayer film thickness (h) dependent temperature profile is derived based on the mean substrate temperature estimated from the elaborate thermal model of transient heating and melting/freezing. Large thermocapillary forces are observed along the plane of the liquid-liquid and liquid-gas interfaces due to this h-dependent temperature, which, in turn, is strongly influenced by the h-dependent laser light reflection and absorption. Consequently the dewetting is a result of the competition between thermocapillary and intermolecular forces. A linear analysis of the dewetting length scales established that the non-isothermal calculations better predict the experimental results as compared to the isothermal case within the bounding Hamaker coefficients. Subsequently, a computational non-linear dynamics study of the dewetting pathway was performed for Ag/Co and Co/Ag bilayer systems to predict the morphology evolution. We found that the systems evolve towards formation of different morphologies, including core-shell, embedded, or stacked nanostructure morphologies.


Formation Of Organized Nanostructures From Unstable Bilayers Of Thin Metallic Liquids, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman Dec 2011

Formation Of Organized Nanostructures From Unstable Bilayers Of Thin Metallic Liquids, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman

Mikhail Khenner

Dewetting of pulsed-laser irradiated, thin (< 20 nm), optically reflective metallic bilayers on an optically transparent substrate with a reflective support layer is studied within the lubrication equations model. A steady-state bilayer film thickness (h) dependent temperature profile is derived based on the mean substrate temperature estimated from the elaborate thermal model of transient heating and melting/freezing. Large thermocapillary forces are observed along the plane of the liquid-liquid and liquid-gas interfaces due to this h-dependent temperature, which, in turn, is strongly influenced by the h-dependent laser light reflection and absorption. Consequently the dewetting is a result of the competition between thermocapillary and intermolecular forces. A linear analysis of the dewetting length scales established that the non-isothermal calculations better predict the experimental results as compared to the isothermal case within the bounding Hamaker coefficients. Subsequently, a computational non-linear dynamics study of the dewetting pathway was performed for Ag/Co and Co/Ag bilayer systems to predict the morphology evolution. We found that the systems evolve towards formation of different morphologies, including core-shell, embedded, or stacked nanostructure morphologies.


Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu T. Tekalign, Margo S. Levine Jan 2011

Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu T. Tekalign, Margo S. Levine

Mathematics Faculty Publications

The linear dispersion relation for longwave surface perturbations, as derived by Levine et al. Phys. Rev. B 75, 205312 (2007) is extended to include a smooth surface energy anisotropy function with a variable anisotropy strength (from weak to strong, such that sharp corners and slightly curved facets occur on the corresponding Wulff shape). Through detailed parametric studies it is shown that a combination of a wetting interaction and strong anisotropy, and even a wetting interaction alone results in complicated linear stability characteristics of strained and unstrained films.


Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu Tekalign, Margo Levine Jan 2011

Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu Tekalign, Margo Levine

Mathematics Faculty Publications

The linear dispersion relation for longwave surface perturbations, as derived by Levine et al. Phys. Rev. B 75, 205312 (2007) is extended to include a smooth surface energy anisotropy function with a variable anisotropy strength (from weak to strong, such that sharp corners and slightly curved facets occur on the corresponding Wulff shape). Through detailed parametric studies it is shown that a combination of a wetting interaction and strong anisotropy, and even a wetting interaction alone results in complicated linear stability characteristics of strained and unstrained films.


Modeling Diverse Physics Of Nanoparticle Self-Assembly In Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner Jan 2011

Modeling Diverse Physics Of Nanoparticle Self-Assembly In Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner

Mathematics Faculty Publications

Presents physics behind dewetting of thin liquid films and mathematical/computational modeling tools (Educational/Research presentation for senior physics majors).


Termodynamika Procesowa (Dla Me Aparatura Procesowa) Ćw., Wojciech M. Budzianowski Jan 2011

Termodynamika Procesowa (Dla Me Aparatura Procesowa) Ćw., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


The Analysis Of Heat Transfer In A Gas-Gas Heat Exchanger Operated Under A Heat-Recirculating Mode, Mariusz Salaniec, Wojciech M. Budzianowski Jan 2011

The Analysis Of Heat Transfer In A Gas-Gas Heat Exchanger Operated Under A Heat-Recirculating Mode, Mariusz Salaniec, Wojciech M. Budzianowski

Wojciech Budzianowski

The present paper presents the analysis of heat transfer in a gas-gas heat exchanger operated in a heat-recirculating mode.


An Overview Of Technologies For Upgrading Of Biogas To Biomethane, Wojciech M. Budzianowski Jan 2011

An Overview Of Technologies For Upgrading Of Biogas To Biomethane, Wojciech M. Budzianowski

Wojciech Budzianowski

The present contribution presents an overview of technologies available for upgrading of biogas to biomethane. Technologies under study include pressure swing adsorption (PSA), high-pressure water wash (HPWW), reactive absorption (RA), physical absorption (PA), membrane separation (MS) and cryogenic separation (CS).


Influence Of Energy Policy On The Rate Of Implementation Of Biogas Power Plants In Germany During The 2001-2010 Decade, Izabela Chasiak, Wojciech M. Budzianowski Jan 2011

Influence Of Energy Policy On The Rate Of Implementation Of Biogas Power Plants In Germany During The 2001-2010 Decade, Izabela Chasiak, Wojciech M. Budzianowski

Wojciech Budzianowski

The current article describes energy policy tools, which caused intensive development of biogas-based power generation in Germany during the 2001-2010 decade. The German system of financial support to biogas power plants is presented in details. It is shown that in Germany, i.e. in a country characterised by similar climate and potentials to renewable energy to Poland, biogas power plants cover 10,7% of electricity demands in 2010, while all renewable energy sources cover only 5,4% of electricity demands. It is emphasised that under favourable Polish energy policy, the development of biogas energy can be very rapid.


Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu T. Tekalign, Margo S. Levine Jan 2011

Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu T. Tekalign, Margo S. Levine

Mikhail Khenner

The linear dispersion relation for longwave surface perturbations, as derived by Levine et al. Phys. Rev. B 75, 205312 (2007) is extended to include a smooth surface energy anisotropy function with a variable anisotropy strength (from weak to strong, such that sharp corners and slightly curved facets occur on the corresponding Wulff shape). Through detailed parametric studies it is shown that a combination of a wetting interaction and strong anisotropy, and even a wetting interaction alone results in complicated linear stability characteristics of strained and unstrained films.


Modeling Diverse Physics Of Nanoparticle Self-Assembly In Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner Jan 2011

Modeling Diverse Physics Of Nanoparticle Self-Assembly In Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner

Mikhail Khenner

Presents physics behind dewetting of thin liquid films and mathematical/computational modeling tools (Educational/Research presentation for senior physics majors).


The Homotopy Perturbation Method For Free Vibration Analysis Of Beam On Elastic Foundation, Baki Ozturk, Safa Bozkurt Coskun Dec 2010

The Homotopy Perturbation Method For Free Vibration Analysis Of Beam On Elastic Foundation, Baki Ozturk, Safa Bozkurt Coskun

Safa Bozkurt Coskun

In this study, the homotopy perturbation method (HPM) is applied to free vibration analysis of beam on elastic foundation. This numerical method is applied on three different axially loaded cases, namely: 1) one end fixed, the other end simply supported; 2) both ends fixed and 3) both ends simply supported cases. Analytical solutions and frequency factors are evaluated for different ratios of axial load N acting on the beam to Euler buckling load, Nr. The application of HPM for the particular problem in this study gives results which are in excellent agreement with both analytical solutions and the variational iteration …


Energetyka Niskoemisyjna, Wojciech M. Budzianowski Sep 2010

Energetyka Niskoemisyjna, Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner Mar 2010

Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner

Mathematics Faculty Publications

An introduction to mathematical modeling of ultrathin solid films and the role of such modeling in nanotechnologies: Educational presentation for senior physics majors


Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner Mar 2010

Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner

Mathematics Faculty Publications

An introduction to mathematical modeling of ultrathin solid films and the role of such modeling in nanotechnologies: Educational/Research presentation for senior physics majors


Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner Mar 2010

Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner

Mikhail Khenner

An introduction to mathematical modeling of ultrathin solid films and the role of such modeling in nanotechnologies: Educational/Research presentation for senior physics majors


Oscillatory And Monotonic Modes Of Long-Wave Marangoni Convection In A Thin Film, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev Jan 2010

Oscillatory And Monotonic Modes Of Long-Wave Marangoni Convection In A Thin Film, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev

Mathematics Faculty Publications

We study long-wave Marangoni convection in a layer heated from below. Using the scaling k=O Bi, where k is the wave number and Bi is the Biot number, we derive a set of amplitude equations. Analysis of this set shows presence of monotonic and oscillatory modes of instability. Oscillatory mode has not been previously found for such direction of heating. Studies of weakly nonlinear dynamics demonstrate that stable steady and oscillatory patterns can be found near the stability threshold.


Oscillatory And Monotonic Modes Of Long-Wave Marangoni Convection In A Thin Film, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev Jan 2010

Oscillatory And Monotonic Modes Of Long-Wave Marangoni Convection In A Thin Film, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev

Mathematics Faculty Publications

We study long-wave Marangoni convection in a layer heated from below. Using the scaling k=O Bi, where k is the wave number and Bi is the Biot number, we derive a set of amplitude equations. Analysis of this set shows presence of monotonic and oscillatory modes of instability. Oscillatory mode has not been previously found for such direction of heating. Studies of weakly nonlinear dynamics demonstrate that stable steady and oscillatory patterns can be found near the stability threshold.


Grafika Inżynierska Ćw., Wojciech M. Budzianowski Jan 2010

Grafika Inżynierska Ćw., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Projektowanie Procesów Biotechnologicznych Proj., Wojciech M. Budzianowski Jan 2010

Projektowanie Procesów Biotechnologicznych Proj., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Projektowanie I Optymalizacja Procesów Proj., Wojciech M. Budzianowski Jan 2010

Projektowanie I Optymalizacja Procesów Proj., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Metody Numeryczne Lab., Wojciech M. Budzianowski Jan 2010

Metody Numeryczne Lab., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Odnawialne Źródła Energii W., Wojciech M. Budzianowski Jan 2010

Odnawialne Źródła Energii W., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Oscillatory And Monotonic Modes Of Long-Wave Marangoni Convection In A Thin Film, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev Jan 2010

Oscillatory And Monotonic Modes Of Long-Wave Marangoni Convection In A Thin Film, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev

Mikhail Khenner

We study long-wave Marangoni convection in a layer heated from below. Using the scaling k=OBi, where k is the wave number and Bi is the Biot number, we derive a set of amplitude equations. Analysis of this set shows presence of monotonic and oscillatory modes of instability. Oscillatory mode has not been previously found for such direction of heating. Studies of weakly nonlinear dynamics demonstrate that stable steady and oscillatory patterns can be found near the stability threshold.


Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner Dec 2009

Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner

Mathematics Faculty Publications

A mathematical model for the evolution of pulsed laser-irradiated, molten metallic films has been developed using the lubrication theory. The heat transfer problem that incorporates the absorbed heat from a single laser beam or the interfering laser beams is solved analytically. Using this temperature field, we derive the 3D long-wave evolution PDE for the film height. To get insights into dynamics of dewetting, we study the 2D version of the evolution equation by means of a linear stability analysis and by numerical simulations. The stabilizing and destabilizing effects of various system parameters, such as the reflectivity, the peak laser beam …


Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner Dec 2009

Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner

Mathematics Faculty Publications

A mathematical model for the evolution of pulsed laser-irradiated, molten metallic films has been developed using the lubrication theory. The heat transfer problem that incorporates the absorbed heat from a single laser beam or the interfering laser beams is solved analytically. Using this temperature field, we derive the 3D long-wave evolution PDE for the film height. To get insights into dynamics of dewetting, we study the 2D version of the evolution equation by means of a linear stability analysis and by numerical simulations. The stabilizing and destabilizing effects of various system parameters, such as the reflectivity, the peak laser beam …