Open Access. Powered by Scholars. Published by Universities.®

Catalysis and Reaction Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Discipline
Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 721 - 750 of 1450

Full-Text Articles in Catalysis and Reaction Engineering

Comparison In Factors Affecting Electrochemical Properties Of Thermal-Reduced Graphene Oxide For Supercapacitors, Peng Xiao, Da-Hui Wang, Jun-Wei Lang Dec 2014

Comparison In Factors Affecting Electrochemical Properties Of Thermal-Reduced Graphene Oxide For Supercapacitors, Peng Xiao, Da-Hui Wang, Jun-Wei Lang

Journal of Electrochemistry

In this paper, thermal-reduced graphene oxide (T-RGO) materials are synthesized by modified Hummer’s method, followed by thermal reduction under argon atmosphere at different temperatures. Electrochemical investigations show that, for T-RGO electrodes, good electrical conductivity is necessary and the surface functional groups play more significant role than the specific surface area in determining the electrochemical capacitance. The T-RGO obtained at 900 °C (T-RGO900) with a relatively high Brunauer-Emmett-Teller (BET) surface area (314 m2·g-1) and a high electrical conductivity (2421 S·m-1) shows a low specific capacitance of 56 F·g-1. In comparison, the T-RGO obtained …


One-Step Synthesis Of Pani/Nihcf Hybrid Film Using Unipolar Pulse Electrodeposition And Its Electrocatalytic Reduction Performance For H2O2 Detection, Sen-Liang Liao, Xiu-Min Li, Xiao-Gang Hao, Yan-Hong Wang, Chun-Feng Xue, Yong-Hong Wang Dec 2014

One-Step Synthesis Of Pani/Nihcf Hybrid Film Using Unipolar Pulse Electrodeposition And Its Electrocatalytic Reduction Performance For H2O2 Detection, Sen-Liang Liao, Xiu-Min Li, Xiao-Gang Hao, Yan-Hong Wang, Chun-Feng Xue, Yong-Hong Wang

Journal of Electrochemistry

Organic–inorganic hybrid films composed of polyaniline/nickel hexacyanoferrate (PANI/NiHCF) were fabricated on platinum substrates using unipolar pulse one-step electrodeposition. The deposition mechanism of hybrid film was proposed: Due to high potential of unipolar pulse electrodeposition, which avoided the reduction of Fe(CN)63-, the films with high electrocatalytic property and “insoluble” form of NiHCF were achieved. The morphology and composition of PANI/NiHCF hybrid film were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FT-IR). The effect of pulse potential on the electrochemical performance of hybrid film was investigated in detail. Results showed that …


Platinum Hollow Nanospheres With Different Sizes: Controllable Synthesis And Electrocatalytic Oxidation Toward Methanol, Xuan Lin, Mei-Qin Cheng, Zhong-Jin Shang, Ting Xiong, Xian-Tu Zhang, Wei Tian, Jian-Yun Lin, Qi-Ling Zhong, Bin Ren Dec 2014

Platinum Hollow Nanospheres With Different Sizes: Controllable Synthesis And Electrocatalytic Oxidation Toward Methanol, Xuan Lin, Mei-Qin Cheng, Zhong-Jin Shang, Ting Xiong, Xian-Tu Zhang, Wei Tian, Jian-Yun Lin, Qi-Ling Zhong, Bin Ren

Journal of Electrochemistry

The selenium (Se) templates and hollow platinum (Pthollow) nanospheres with different sizes were controllably synthesized by adjusting the concentration of sodium dodecyl sulphonate (SDSN) (CSDSN, μmol·L-1) which was used as a surfactant. Accordingly, the Pthollow nanospheres modified glassy carbon (GC) electrode (Pthollow/GC) was prepared. The morphology and composition of Pthollow nanospheres were characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDX), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and X-ray diffraction (XRD) techniques. The electrocatalytic activities of Pthollow/GC and electrodeposited Pt nanoparticles modified glassy carbon electrode (Ptnano/GC) toward methanol oxidation …


Scale-Up Methodology For Bench-Scale Slurry Photocatalytic Reactors Using Combined Irradiation And Kinetic Modelling, Patricio J. Valades Pelayo Dec 2014

Scale-Up Methodology For Bench-Scale Slurry Photocatalytic Reactors Using Combined Irradiation And Kinetic Modelling, Patricio J. Valades Pelayo

Electronic Thesis and Dissertation Repository

The present study focuses on developing a predictive methodology to scale-up a slurry annular photoreactor using a TiO2 Degussa P25 from the bench-scale to a pilot-plant scale. The bench-scale photoreactor is a Photo-CREC-Water II, a 2.65 L internally-irradiated slurry annular photocatalytic reactor. The pilot-plant scale photoreactor is a Photo-CREC Water Solar Simulator, a 9.8 L pilot-plant photoreactor, externally irradiated by eight lamps.

The adopted methodology allows the independent validation of radiative and kinetic models avoiding cross-correlation issues. The proposed approach involves two Monte Carlo methods, to model the Radiative Transfer Equation (RTE) inside each photoreactor. With this end, a …


Production Of Sustainable Aromatics From Biorenewable Furans, Christopher Luke Williams Nov 2014

Production Of Sustainable Aromatics From Biorenewable Furans, Christopher Luke Williams

Doctoral Dissertations

Increasing demand for renewable and domestic energy and materials has led to an accelerated research effort in developing biomass-derived fuels and chemicals. The North American shale gas revolution can provide a domestic source for the manufacture of four of the five major products of the world chemical industry: methanol, ethylene, ammonia, and propylene. However this emerging domestic resource lacks a conversion pathway to the fifth major chemical building block; the larger C6 aromatics benzene, toluene, and xylene (BTX). One sustainable feedstock for renewable C6 aromatic chemicals is sugars produced by the saccharification of biopolymers (e.g., cellulose, hemicellulose). The catalytic conversion …


Primary And Secondary Reactions Of Cellulose Melt Pyrolysis, Alex D. Paulsen Nov 2014

Primary And Secondary Reactions Of Cellulose Melt Pyrolysis, Alex D. Paulsen

Doctoral Dissertations

Fast pyrolysis of biomass is a next-generation biofuels production process that is capable of converting solid lignocellulosic materials (in their raw form) to a transportable liquid (bio-oil) which can be catalytically hydrogenated to fuels and chemicals. Pyrolysis reactors depolymerize solid biomass by heating the feedstock (in the absence of oxygen) up to high temperatures (400 – 600 °C) to produce a short-lived intermediate liquid phase (only a few seconds), which ultimately breaks down to form small (1-6 carbon) oxygenates. These vapor-products can then be condensed at room temperature to produce liquid bio-oil. While biomass fast pyrolysis has enormous potential to …


Production Of Renewable Fuels And Chemicals From Biomass-Dervied Furan Compounds, Sara K. Green Nov 2014

Production Of Renewable Fuels And Chemicals From Biomass-Dervied Furan Compounds, Sara K. Green

Doctoral Dissertations

Growing concern over the petroleum supply, energy independence, and environmental impacts associated with fossil fuels, has motivated research into the production of renewable fuels and aromatic chemicals from biomass resources. Specifically, furan-based feedstocks such as furfural, 2-methylfuran (MF) and, 2,5-dimethylfuran (DMF) can be derived from biomass and used to produce a wide variety of desired compounds. These furan-based feedstocks are produced by: (a) the hydrolysis of cellulose and hemicellulose form to glucose and xylose, (b) the dehydration of these carbohydrates to form 5-hydroxymethylfurfural (HMF) and furfural, and (c) the reduction of HMF and furfural to DMF, MF, and furan. The …


Production Of Renewable Chemicals And Energy From Waste Biomass, Sheng Chu Nov 2014

Production Of Renewable Chemicals And Energy From Waste Biomass, Sheng Chu

Doctoral Dissertations

With the rapid growth of world population and developing industries, the production of wastes has dramatically increased in the past decades. Due to environmental concerns and limited landfill space, the disposal of wastes has been subjected to strict regulations. Beneficial uses of wastes such as recycling/reuse, land applications, energy production, and resource recovery have been advocated greatly. This thesis presents the utilization of two types of solid waste: lignin and waste paper/plastic. Through thermochemical conversion, wastes can be converted to chemicals and energy. This aims at reducing the energy dependence on fossil fuels while achieving effective waste management. Lignin is …


Electrochemistry Of Glucose Oxidase Modified On Porin-Phospholipid Biomimic Membrane, Kun-Qi Wang, Zuo-Ming Zhang, Wei Xing, Chang-Peng Liu, Xing Zhou Oct 2014

Electrochemistry Of Glucose Oxidase Modified On Porin-Phospholipid Biomimic Membrane, Kun-Qi Wang, Zuo-Ming Zhang, Wei Xing, Chang-Peng Liu, Xing Zhou

Journal of Electrochemistry

Biomimic membrane with nano-channels, which is made up of porin MspA and 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) is constructed on glassy carbon substrate, and glucose oxidase (GOD) is modified on it. The direct electrochemical reaction and electrocatalytic behavior to oxygen and glucose of GOD on the GOD/MspA-DMPC/GC electreode are expounded by the cyclic voltammetric method. The study shows that GOD immobilized on porin MspA and DMPC biomimic membrane displays direct and surface-controlled electrochemical reaction nearby formal potential (E0′) of the flavoprotein active centre (FAD/FADH), and the electrochemical reaction contains two electrons and two protons exchange in 0.1 mmol?L-1 phosphate buffer solution (PBS) …


Fabrication Of Pattern Of Graphene Oxide And Au Nanoparticles By Microcontanct Printing Technique, Wen-Hui Pang, Xiao-Jian Xiao, Meng-Wei Ye, Kai-Chao Deng, Jing Tang Oct 2014

Fabrication Of Pattern Of Graphene Oxide And Au Nanoparticles By Microcontanct Printing Technique, Wen-Hui Pang, Xiao-Jian Xiao, Meng-Wei Ye, Kai-Chao Deng, Jing Tang

Journal of Electrochemistry

Graphene oxide (GO) was prepared by modified Hummers method. Using the GO solution as "ink", Au nanoparticles (AuNPs) and GO were transferred to the surface of ITO substrate modified with (3-aminopropyl) triethoxysilane (APTES/ITO) in a sequence. The transferred AuNPs and GO could form a uniform and dense composite pattern which was characterized by FE-SEM and AFM. Moreover, using the APTES/ITO substrate surface potential as zero, the sequences of the surface potential were APTES>GO>Au.


Preparation Of Pt/Dna-Mwcnts/Gc Electrode And Its Electrocatalytic Activity Toward H2O2 Reduction, Li-Li Fan, Li-Na Wu, Zhi-Yu Qu, Dan-Feng Liu, Jun-Ming Zhang, Si-Ming Fan, You-Jun Fan Oct 2014

Preparation Of Pt/Dna-Mwcnts/Gc Electrode And Its Electrocatalytic Activity Toward H2O2 Reduction, Li-Li Fan, Li-Na Wu, Zhi-Yu Qu, Dan-Feng Liu, Jun-Ming Zhang, Si-Ming Fan, You-Jun Fan

Journal of Electrochemistry

The DNA-multi-walled carbon nanotubes (MWCNTs)/glassy carbon (GC) electrode was prepared by modifying the DNA functionalized MWCNTs composite on a GC electrode. A novel non-enzymatic H2O2 sensing electrode was fabricated by electrodepositing Pt nanoparticles on the DNA-MWCNTs/GC electrode. The modified electrodes were characterized by scanning electron microscope (SEM). The response properties of the sensing electrode to H2O2 were investigated by cyclic voltammetry and chronoamperometry. The results indicated that the sensing electrode exhibited a good linear relationship between response current and H2O2 concentration in the range of 0.04 ~ 18.07 mmol·L-1 with …


Electro-Catalytic Properties Of Β-Pbo2/Sb-Sno2/Ti Electrode On Phenol Oxidation, Peng Li, Yue-Min Zhao, Li-Zhang Wang, Yan-Le Zhang, Zhao-Qing Lu Oct 2014

Electro-Catalytic Properties Of Β-Pbo2/Sb-Sno2/Ti Electrode On Phenol Oxidation, Peng Li, Yue-Min Zhao, Li-Zhang Wang, Yan-Le Zhang, Zhao-Qing Lu

Journal of Electrochemistry

The combination technology of brush pyrolysis and electroplating was employed in the preparation of β-PbO2/Sb-SnO2/Ti electrode. X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM) results showed that the Sb-SnO2 as an interlayer would restrain the formation of lead fluoride and the crystallization degree on the electrode surface could be as high as 100%. The grain size was calculated by Scherrer formula to be 25.2 nm and the agglomeration of lead dioxide was effectively eliminated. The potential span of diffusion control phase, oxygen evolution potential, Tafel slope for the β-PbO2/Sb-SnO2/Ti electrode during …


Fabrication And Characterization Of The Ni-Scsz Composite Anodes With A Cu-Lscm-Ceo2 Catalyst Layer In The Thin Film Sofc, Yao Lv, Bo Huang, Xi-Zhi Gu, Chun-Yi Hou, Yi-Xing Hu, Xiao-Yin Wang, Xin-Jian Zhu Oct 2014

Fabrication And Characterization Of The Ni-Scsz Composite Anodes With A Cu-Lscm-Ceo2 Catalyst Layer In The Thin Film Sofc, Yao Lv, Bo Huang, Xi-Zhi Gu, Chun-Yi Hou, Yi-Xing Hu, Xiao-Yin Wang, Xin-Jian Zhu

Journal of Electrochemistry

Solid oxide fuel cell (SOFC) directly operating on hydrocarbon without external reforming has the potential of greatly speeding up the application of SOFCs for transportation. In this paper, a three-layer structure anode was fabricated by tape casting and screen printing method. The addition of Cu-LSCM-CeO2 to the supported anode surface presented better performance running on H2 and ethanol. The maximum power densities were 511 and 390 mW?cm-2, respectively, running on H2 and ethanol at 750 °C. No significant degradation was observed on the anode. Consequently, the Cu-LSCM-CeO2 catalyst layer on the surface of the …


Influence Of Pt:Ru Ratio In Nanotubes Array Structures On The Electrocatalytic Activity Of Methanol Oxidation, Jin-Hua Yuan, Feng-Bin Wang, Xing-Hua Xia Oct 2014

Influence Of Pt:Ru Ratio In Nanotubes Array Structures On The Electrocatalytic Activity Of Methanol Oxidation, Jin-Hua Yuan, Feng-Bin Wang, Xing-Hua Xia

Journal of Electrochemistry

Bimetallic PtRu nanotubes array electrodes (NTAEs) with varied Pt to Ru atomic ratios have been prepared by electrochemical codeposition in 3-aminopropyltri-methoxysilane modified porous anodic alumina (PAA) membranes. The structure and morphology of the catalysts were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Electrochemical results showed that the NTAEs with varied atomic ratios could be achieved by controlling the precursor concentration for deposition. The prepared nanoarrays composed of Pt or PtRu alloy promoted the mass-normalized activity toward the sluggish electrooxidation reaction of methanol due to the increased catalytic activity and real surface area, as well as the …


Electrochemical And Spectroscopic Studies Of Ethanol Oxidation On Nano-Cubic Pt Modified By Tin Adatoms, Lu Rao, Bin-Wei Zhang, Yan-Yan Li, Yan-Xia Jiang, Shi-Gang Sun Oct 2014

Electrochemical And Spectroscopic Studies Of Ethanol Oxidation On Nano-Cubic Pt Modified By Tin Adatoms, Lu Rao, Bin-Wei Zhang, Yan-Yan Li, Yan-Xia Jiang, Shi-Gang Sun

Journal of Electrochemistry

The nano-cubic Pt modified by tin (Sn) was synthesized and used to investigate the role of this adatom played in the ethanol oxidation. The onset potential of ethanol oxidation was significantly shifted negatively which can be forward about 300 mV when the coverage of Sn (θSn)was 0.9. The electrtochemical in situ FTIR result demonstrated that the amount of CO2 increased first, and then decreased with θSn increased, and reached the maximun when θSn was 0.38. Furthermore, the formation of acetic acid could be observed at very low potential (-0.05 V) after modifying Sn adatom, and the amount of acetic acid …


Boosting Electrocatalytic Activity Of Nitrogen-Doped Graphene/Carbon Nanotube Composite For Oxygen Reduction Reaction, Yu Zhang, Jin-Song Hu, Wen-Jie Jiang, Lin Guo, Zi-Dong Wei, Li-Jun Wan Oct 2014

Boosting Electrocatalytic Activity Of Nitrogen-Doped Graphene/Carbon Nanotube Composite For Oxygen Reduction Reaction, Yu Zhang, Jin-Song Hu, Wen-Jie Jiang, Lin Guo, Zi-Dong Wei, Li-Jun Wan

Journal of Electrochemistry

Developing low-cost catalysts with high electrocatalytic activity for oxygen reduction reaction (ORR) has recently attracted much attention because the sluggish ORR currently limits the performance and commercialization of fuel cells and metal-air batteries as well. Nitrogen doped carbon materials have been considered as a promising candidate for the replacement of high-cost and scarce Pt-based catalysts although their electrocatalytic activity still needs to be much improved. In this work, an improved nitrogen-doped graphene/carbon nanotubes composite (N-rGO/CNT) was developed as an efficient ORR electrocatalyst. It was found that the ORR activity of N-rGO/CNT composite could be significantly enhanced by introducing iron in …


Effect Of Imidazole Ionic Liquids On The Electro-Oxidation Of P-Methoxy Toluene, Qiong Chen, Ying-Hong Zhu, Ying Zhu, Yan-Fang Li, Chun-An Ma Oct 2014

Effect Of Imidazole Ionic Liquids On The Electro-Oxidation Of P-Methoxy Toluene, Qiong Chen, Ying-Hong Zhu, Ying Zhu, Yan-Fang Li, Chun-An Ma

Journal of Electrochemistry

The interactions between four Imidazole ionic liquids (EMIMBF4, BMIMBF4, BMIMHSO4, BMIMAc) and p-methoxy toluene were investigated by ultraviolet spectroscopy. The red shifts of absorption peak were obviously observed, and the fine structures of the spectroscopy were disappeared on the long wave district. p-MT producing stable excited state was benefit from the interaction with solvent molecules. The electro-oxidation behavious of p-MT were studied in the four ILs on platinum electrode by cyclic voltammetry (CV) and chronoamperometry (CP), and the diffusion coefficients (D) and activation energies (ED) were calculated. The results indicated that the electro-oxidation process …


Recent Progress In Heteroatoms Doped Carbon Materials As A Catalyst For Oxygen Reduction Reaction, Wei Ding, Xue Zhang, Li Li, Zi-Dong Wei Oct 2014

Recent Progress In Heteroatoms Doped Carbon Materials As A Catalyst For Oxygen Reduction Reaction, Wei Ding, Xue Zhang, Li Li, Zi-Dong Wei

Journal of Electrochemistry

Developing catalytic materials for oxygen reduction reactions (ORR) with high performance and low cost has been one of the major challenges for large-scale applications of fuel cells. In this review, we summarize the recent progress in the heteroatoms doped carbon materials as a catalyst for the catalysis of ORR, with an emphasis on the universal origin of their catalytic mechanisms. The future prospects of the metal-free catalyst were to find precisely controlled doping methods, to explore the role of heteroatoms in the catalysis, and to generate more active catalysts with suitable nanostructure.


Electrochemically Active Biofilm Assisted Synthesis Of Ag@Ceo2 Nanocomposites For Antimicrobial Activity, Photocatalysis And Photoelectrodes, Mohammad Mansoob Khan Dr, S. A. Ansari, J. H. Lee, M. O. Ansari, J Lee, M. H. Cho Sep 2014

Electrochemically Active Biofilm Assisted Synthesis Of Ag@Ceo2 Nanocomposites For Antimicrobial Activity, Photocatalysis And Photoelectrodes, Mohammad Mansoob Khan Dr, S. A. Ansari, J. H. Lee, M. O. Ansari, J Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

Ag@CeO2 nanocomposites were synthesized by a biogenic and green approach using electrochemically active biofilms (EABs) as a reducing tool. The as-synthesized Ag@CeO2 nanocomposites were characterized and used in antimicrobial, visible light photocatalytic and photoelectrode studies. The Ag@CeO2 nanocomposites showed effective and efficient bactericidal activities and survival test against Escherichia coli O157:H7, and Pseudomonas aeruginosa. The as-synthesized Ag@CeO2 nanocomposites also exhibited enhanced visible light photocatalytic degradation of 4-nitrophenol and methylene blue than pure CeO2. A photocatalytic investigation showed that the Ag@CeO2 nanocomposites possessed excellent visible light photocatalytic activities compared to pure CeO2. Electrochemical impedance spectroscopy and photocurrent measurements showed that the …


Electrochemical Catalysis: A Dft Study, Li Li, Zi-Dong Wei Aug 2014

Electrochemical Catalysis: A Dft Study, Li Li, Zi-Dong Wei

Journal of Electrochemistry

In this review, we focus on achievements in electro-catalysis based on the density function theory study. The relationships among the electrode potential, electronic structure of catalysts and electro-catalytic activity are summarized in three parts: the adsorption and desorption of species, electron transfer, and stability of catalysts. The electrode potential and the electronic structure (d-band center or Fermi (HOMO) energy) of catalysts significantly influence the formation, adsorption and desorption of surface species on electrode. The electro-catalytic activity can be improved by modulating the electrode potential and electronic structure of catalysts.


Recent Progress In The Mechanistic Understanding Of Formic Acid Oxidation On Pt Electrode, Jie Xu, Dao-Chuan Jiang, Dong Mei, Zheng-Da He, Yan-Xia Chen Aug 2014

Recent Progress In The Mechanistic Understanding Of Formic Acid Oxidation On Pt Electrode, Jie Xu, Dao-Chuan Jiang, Dong Mei, Zheng-Da He, Yan-Xia Chen

Journal of Electrochemistry

This article reviews the recent progress in understanding of the mechanisms for formic acid oxidation on Pt electrode. There are two pathways for formic acid oxidation on Pt electrode: (1) Indirect Pathway through which HCOOH is oxidized to CO2 through COad intermediate. This pathway contributes only 1% of the total current; (2) Direct Pathway where HCOOH is oxidized directly to CO2. The results from IR Spectroscopy, single-crystal electrochemistry and DFT calculation all support that the bridge-bonded formate is neither the intermediate of direct pathway nor the precursor for COad formation in indirect pathway. Possible mechanism …


Electrocatalytic Oxidation Of Formate On Pd-Cu/C - Effect Of Dealloying Pretreatment, Jiang Kun, Wang Ye, Lin Tao, Cai Wen-Bin Aug 2014

Electrocatalytic Oxidation Of Formate On Pd-Cu/C - Effect Of Dealloying Pretreatment, Jiang Kun, Wang Ye, Lin Tao, Cai Wen-Bin

Journal of Electrochemistry

Carbon supported highly dispersed Pd-Cu nanoalloy catalyst toward formate electrooxidation is prepared via one-pot synthesis by using ethylene glycol as the reducing agent and sodium citrate as the stabilizer. The as-prepared catalyst is structurally characterized by TEM and XRD. The Cu dealloyment is carried out through repetitive potential cycling of the Pd-Cu/C catalyst in an acidic solution. The dealloying effect on the performance of the Pd-Cu/C is investigated by using cyclic voltammetry and chronoamperometry, and the surface structural change of Pd-Cu/C is probed by in situ ATR-IR measurement. The results show that the as-prepared Pd-Cu/C processes a better long-term stability …


Synthesis Of Silver Nanoparticles Supported On Graphene Quantum Dots For Oxygen Reduction Reaction, Jian Ju, Wei Chen Aug 2014

Synthesis Of Silver Nanoparticles Supported On Graphene Quantum Dots For Oxygen Reduction Reaction, Jian Ju, Wei Chen

Journal of Electrochemistry

Silver-based catalysts have been extensively investigated as the platinum substituted catalysts due to their high catalytic efficiency, low cost and long-term durability. In this study, the surfactant-free silver nanoparticles supported on graphene quantum dots were synthesized through a facile approach without addition of any other protecting ligands and reducing agents. The “surface-clean” silver nanoparticles had remarkable electrocatalytic performance towards oxygen reduction reaction (ORR) with the most efficient four-electron transfer process. Compared with commercial Pt/C catalyst, the hybrid nanoparticles showed comparable catalytic performance for ORR but much higher tolerance to methanol. Such silver nanoparticles supported on graphene quantum dots may have …


Preparation Of Pt-Tio2/Graphene Composites With High Catalytic Activity Towards Methanol Oxidation And Oxygen Reduction Reaction, Li Qi, Ying Yin, Wen-Guang Tu, Bing-Bing Wu, Zhao-Sheng Wang, Jian-Guo Liu, Jun Gu, Zhi-Gang Zou Aug 2014

Preparation Of Pt-Tio2/Graphene Composites With High Catalytic Activity Towards Methanol Oxidation And Oxygen Reduction Reaction, Li Qi, Ying Yin, Wen-Guang Tu, Bing-Bing Wu, Zhao-Sheng Wang, Jian-Guo Liu, Jun Gu, Zhi-Gang Zou

Journal of Electrochemistry

A series of graphene-supported TiO2 nanoparticles (TiO2/G) with different TiO2 contents were prepared by a facile hydrothermal method, and then the Pt-TiO2/G catalysts were successfully prepared by reducing Pt-precursor with microwave technique. Compared with Pt-G catalysts, the catalytic performance toward oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) of Pt-TiO2/G catalysts was improved due to the addition of TiO2. However, the excessive TiO2 would lead to a poor catalytic performance of Pt-TiO2/G catalysts because of the low electrical conductivity of TiO2.


Electrochemical Fabrication Of Two-Dimensional Flower-Like Pt Nanostructures For Methanol Electrocatalytic Oxidation, Xia Wang, Jun Hu, Yong-Jun Li Aug 2014

Electrochemical Fabrication Of Two-Dimensional Flower-Like Pt Nanostructures For Methanol Electrocatalytic Oxidation, Xia Wang, Jun Hu, Yong-Jun Li

Journal of Electrochemistry

Two-dimensional flower-like Pt nanostructures (2D FPNs) were fabricated on glassy carbon substrates by galvanostatical electrochemical technique. The electrolyte was the HAuCl4 + HClO4 aqueous solution without addition of any structure-directing organic reagent, which made as-prepared Pt nanostructures cleaner, exhibiting much higher reactivity. Scanning electron microscopic images revealed that 2D FPNs were spherical Pt nano-flowers constructed by the smallest building blocks, nano-leaves. The number density of spherical Pt nano-flowers can be tuned by controlling the electrodeposition time. High resolution transmission electron microscopic images indicated that each nano-leaf was formed by growing along Pt(111) direction. Electrocatalytic activities of as-prepared 2D …


Effecting Of Dissolved Oxygen On Microbial Fuel Cells Based On Pseudomonas Aeruginosa, Chang-Li Cao, Li-Xiang Chen, Ran-Ran Wu, Ken-Lin Chang, Feng Zhao Aug 2014

Effecting Of Dissolved Oxygen On Microbial Fuel Cells Based On Pseudomonas Aeruginosa, Chang-Li Cao, Li-Xiang Chen, Ran-Ran Wu, Ken-Lin Chang, Feng Zhao

Journal of Electrochemistry

In this work, the reaction between the electron shuttle secreted by Pseudomonas aeruginosa and anode was studied by measuring cyclic voltammogram and open circuit potential. The effect of dissolved oxygen on the oxidation reaction of anode was explored. It was demonstrated that the reaction was a diffusion-controlled and reversible process. The anode was a little affected when the dissolved oxygen of inocula was low (0 ~ 1.6 mg·L-1). The polarization curves showed that the current output of microbial fuel cells decreased 7% with the impact of dissolved oxygen.


Reductive Depolymerization Of Kraft Lignin For Chemicals And Fuels Using Formic Acid As A In-Situ Hydrogen Source, Shanhua Huang Aug 2014

Reductive Depolymerization Of Kraft Lignin For Chemicals And Fuels Using Formic Acid As A In-Situ Hydrogen Source, Shanhua Huang

Electronic Thesis and Dissertation Repository

In this thesis work, formic acid (FA) proved to be an effective in-situ hydrogen donor for the reductive de-polymerization of kraft lignin (KL). At the optimum conditions without catalysts, i.e., 300 oC, 1 h, 18.6 wt.% substrate concentration, 50/50 (v/v) water-ethanol medium at a FA-to-lignin mass ratio of 0.7, KL (Mw ~10,000 g/mol) was effectively de-polymerized, producing de-polymerized lignin (DL, Mw 1, 270 g/mol) at a yield of ~90 wt.% and wt.% yield of solid residue (SR). The effects of heterogeneous catalysts on KL reductive de-polymerization in 50/50 (v/v) water-ethanol medium were also investigated. At all conditions, …


Influence Of Crystal Structure On The Electrochemical Performance Of A-Site-Deficient Sr 1-Xnb 0.1 Co 0.9 O 3-Δ Perovskite Cathodes, Yinlong Zhu, Ye Lin, Xuan Shen, Jaka Sunarso, Wei Zhou, Shanshan Jiang, Dong Su, Fanglin Chen, Zongping Shao Aug 2014

Influence Of Crystal Structure On The Electrochemical Performance Of A-Site-Deficient Sr 1-Xnb 0.1 Co 0.9 O 3-Δ Perovskite Cathodes, Yinlong Zhu, Ye Lin, Xuan Shen, Jaka Sunarso, Wei Zhou, Shanshan Jiang, Dong Su, Fanglin Chen, Zongping Shao

Faculty Publications

The creation of A-site cation defects within a perovskite oxide can substantially alter the structure and properties of its stoichiometric analogue. In this work, we demonstrate that by vacating 2 and 5% of A-site cations from SrNb0.1Co0.9O3−δ (SNC1.00) perovskites (Sr1−sNb0.1Co0.9O3−δ, s = 0.02 and 0.05; denoted as SNC0.98 and SNC0.95, respectively), a Jahn–Teller (JT) distortion with varying extents takes place, leading to the formation of a modified crystal lattice within a the perovskite framework. Electrical conductivity, electrochemical performance, chemical compatibility and microstructure of Sr …


The Role Of Surface Area In Catalytic Gasification Of Biomass, Elizabeth A. Wachs, Nitish Kumar, Indraneel Sircar, Prithviraja Basak, Jay P. Gore Phd Aug 2014

The Role Of Surface Area In Catalytic Gasification Of Biomass, Elizabeth A. Wachs, Nitish Kumar, Indraneel Sircar, Prithviraja Basak, Jay P. Gore Phd

The Summer Undergraduate Research Fellowship (SURF) Symposium

Gasification of biomass has the potential to provide a carbon-negative source of liquid fuels. The current limited use of gasification is due in part to the high temperatures necessary to achieve high conversion levels. These temperatures can be lowered by the use of catalysts, but the mechanisms by which catalysts affect the reaction rate are not fully understood. Here, the structural component of potassium carbonate’s role in the gasification process was examined. Samples of pinewood sawdust were impregnated with potassium carbonate, then pyrolyzed with N2 in a fixed bed reactor at 750°C (heater thermocouple reading). Half of the char was …


The Catalysis Of Delayed Petroleum Coking, Anya M. Heinimann, Robert Khakimov, Hyun-Tae Hwang, Enrico N. Martinez Aug 2014

The Catalysis Of Delayed Petroleum Coking, Anya M. Heinimann, Robert Khakimov, Hyun-Tae Hwang, Enrico N. Martinez

The Summer Undergraduate Research Fellowship (SURF) Symposium

Due to the decreasing crude oil quality (heavier crudes and increasing contaminant concentrations) methods for upgrading residues from the refining process, such as coking, are becoming increasingly important. Delayed coking, a method by which residues are thermally cracked (large heavy molecules broken into smaller lighter molecules), produces liquid products and solid coke which can both be sold for further profit. In order to increase the amount of liquid products produced since they are the most value added product of the coking process catalysts (platinum on 0.5% alumina and nickel (skeletal),molybdenum promoted (1 wt%)) were tested to see how they would …