Open Access. Powered by Scholars. Published by Universities.®

Catalysis and Reaction Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses and Dissertations

Discipline
Institution
Keyword
Publication Year

Articles 1 - 12 of 12

Full-Text Articles in Catalysis and Reaction Engineering

From Waste To Energy: The Electrochemical Reduction Of Co2 Using Recycled Nanostructured Catalysts, Ibrahim Badawy Jul 2023

From Waste To Energy: The Electrochemical Reduction Of Co2 Using Recycled Nanostructured Catalysts, Ibrahim Badawy

Theses and Dissertations

The reduction of carbon dioxide (CO2RR) using electrochemistry is a promising solution for the burgeoning global energy crisis. The overall vision of its implementation relies on renewable energy sources to power the reaction creating carbon neutral products and effectively closing the carbon cycle. Research in this field has come a long way since its inception in the mid-1900s. However, there remain significant hurdles and important considerations to overcome in order to reach full commercialization. Most electrocatalysts tested for CO2RR have been designed solely for maximum performance while ignoring the environmental consequences if such a material were …


Photocatalytic Degradation Of Organic Contaminants By Titania Particles Produced By Flame Spray Pyrolysis, Noah Babik May 2022

Photocatalytic Degradation Of Organic Contaminants By Titania Particles Produced By Flame Spray Pyrolysis, Noah Babik

Theses and Dissertations

Advanced oxidation of organic pollutants with TiO2 photocatalysts is limited due to the wide bandgap of TiO2, 3.2 eV, which requires ultraviolet (UV) radiation. When nanosized TiO2 is modified by carbon doping, charge recombination is inhibited and the bandgap is narrowed, allowing for efficient photodegradation under visible light. Here, we propose a flame spray pyrolysis (FSP) technique to create TiO2. The facile process of FSP has been successful in preparing highly crystalline TiO2 nanoparticles. Using the same procedure to deposit TiO2 onto biochar, the photocatalyst was doped by the carbonaceous material. The morphology, crystalline and electronic structure of the FSP …


Design And Fabrication Of Nanostructured Electrodes For Complementary Electrochemical And Photoelectrochemical Water Splitting, Kholoud El Sayed Abousalem Jan 2022

Design And Fabrication Of Nanostructured Electrodes For Complementary Electrochemical And Photoelectrochemical Water Splitting, Kholoud El Sayed Abousalem

Theses and Dissertations

Designing highly active, durable, and nonprecious electrodes for overall water splitting is of urgent scientific importance to realize sustainable hydrogen production. Accordingly, the need to search efficient energy production systems is of crucial necessity. In this thesis, two various systems for sustainable hydrogen production have been reported using electrochemical and photoelectrochemical pathways. In the first part of the thesis, electrochemical water splitting involving both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) has been established. To this end, an innovative approach is demonstrated to synthesize flower-like 3D homogenous trimetallic Mn, Ni, Co phosphide catalysts directly on nickel foam via …


Catalytic Light Alkanes Selective Conversion Through Ammonia-Assisted Reforming, Siavash Fadaeerayeni Dec 2021

Catalytic Light Alkanes Selective Conversion Through Ammonia-Assisted Reforming, Siavash Fadaeerayeni

Theses and Dissertations

The fact that hydrogen is a clean and versatile fuel offers an attractive carbon-free source of energy and leverages the U.S. economy toward long-term sustainable economic growth. At an industrial scale, hydrogen production is mostly relying on methane steam reforming producing stoichiometric amounts of carbon oxides (CO and CO2), which imposes economic and environmental concerns. To mitigate the issue, we propose NH3 assisted anaerobic reforming of natural gas liquids (ethane and propane) as an alternative approach to produce COx free hydrogen. Here, in the first chapter, through comprehensive performance evaluation, characterization, and transient kinetic studies, it is shown that the …


Beneficiation Of Coal Using Supercritical Water And Carbon Dioxide Extraction, Matthew Decuir Virginia Commonwealth University Cl Jan 2020

Beneficiation Of Coal Using Supercritical Water And Carbon Dioxide Extraction, Matthew Decuir Virginia Commonwealth University Cl

Theses and Dissertations

This work explores the use of carbon dioxide, water, and their mixtures as solvent for the pre-combustion beneficiation of raw coal without using any toxic mineral acids in the temperature range of 200-400℃. The fluid polarity, ionic constant, and supercritical point can be adjusted by H2O/CO2 ratio and temperature. Adding carbon dioxide to hydrothermal fluid also increases the ionization by forming carbonic acid. Extractions with supercritical fluids have several benefits including enhanced mass transport, ease of separation and recycle, wide range of extractive capability and tunability, better inherent safety, and in the case of carbon dioxide and …


Application Of Immobilized Palladium Monolithic Catalysts In Suzuki-Miyaura And Tsuji-Wacker Redox Reactions, Sajjad Ghobadi Jan 2020

Application Of Immobilized Palladium Monolithic Catalysts In Suzuki-Miyaura And Tsuji-Wacker Redox Reactions, Sajjad Ghobadi

Theses and Dissertations

Herein, a wholistic analysis of the viability of monolithic catalysts for redox reactions is presented. The interdisciplinary approach taken in this systematic study included preparation and investigation on Pd-on-carbon monoliths as catalysts in a flow and electrochemical settings.

The Suzuki-Miyaura reaction-focused study led to rational design, preparation, and successful application of Pd0-on-graphene oxide (GO) monolithic catalysts in flow conditions. In this study a combination of chemical reduction, freeze-casting, and vapor-phase reduction processes was applied to Pd-GO structures leading to the preparation of these monoliths. The Suzuki flow synthesis reactions revealed that the monolithic structure led to significantly improved …


Engineering Of Earth-Abundant Electrochemical Catalysts, Dylan D. Rodene Jan 2019

Engineering Of Earth-Abundant Electrochemical Catalysts, Dylan D. Rodene

Theses and Dissertations

Alternative energy research into hydrogen production via water electrolysis addresses environmental and sustainability concerns associated with fossil fuel use. Renewable-powered electrolyzers are foreseen to produce hydrogen if energy and cost requirements are achieved. Electrocatalysts reduce the energy requirements of operating electrolyzers by lowering the reaction kinetics at the electrodes. Platinum group metals (PGMs) tend to be utilized as electrocatalysts but are not readily available and are expensive. Ni1-xMox alloys, as low-cost and earth-abundant transition metal nanoparticles (NPs), are emerging as promising electrocatalyst candidates to replace expensive PGM catalysts in alkaline media. Pure-phase cubic and hexagonal Ni1-x …


Graphene As A Solid-State Ligand For Palladium Catalyzed Cross-Coupling Reactions, Yuan Yang Jan 2018

Graphene As A Solid-State Ligand For Palladium Catalyzed Cross-Coupling Reactions, Yuan Yang

Theses and Dissertations

Palladium-catalyzed carbon-carbon cross-coupling reactions have emerged a broadly useful, selective and widely applicable method to synthesize pharmaceutical active ingredients. As currently practiced in the pharmaceutical industry, homogeneous Pd catalysts are typically used in cross-coupling reactions. The rational development of heterogeneous catalysts for cross-coupling reactions is critical for overcoming the major drawbacks of homogeneous catalysis including difficulties in the separation, purification, and quality control process in drug production. In order to apply heterogeneous catalysis to flow reactors that may overcome this limitation, the catalyst must be strongly bound to a support, highly stable with respect to leaching, and highly active. While …


Preparation And Application Of Catalysts For The Stereospecific Reduction And Photooxygenation Of Olefins In Continuous Operations: A Novel Method For The Production Of Artemisinin, Daniel C. Fisher Jan 2017

Preparation And Application Of Catalysts For The Stereospecific Reduction And Photooxygenation Of Olefins In Continuous Operations: A Novel Method For The Production Of Artemisinin, Daniel C. Fisher

Theses and Dissertations

Over the last two centuries, the discovery and application of catalysts has had a substantial impact on how and what chemicals are produced.Given their broad significance, our group has focused on developing new catalyst systems that are recoverable and reusable, in an attempt to reduce concomitant costs.

Our efforts have centered on constructing a recyclable chiral heterogeneous catalyst capable of effecting asymmetric hydrogenations of olefins with high stereoselectivity. A class of phosphinoimidazoline ligands, developed by researchers at Boehringer-Ingelheim, known as BIPI ligands, have proven efficacious in the asymmetric reduction of alkenes. However, these chiral ligands are homogeneous and coordinated to …


Development Of Highly Active And Stable Compressive Pt Cathode Catalysts For Polymer Electrolyte Membrane Fuel Cells, Taekeun Kim Jun 2016

Development Of Highly Active And Stable Compressive Pt Cathode Catalysts For Polymer Electrolyte Membrane Fuel Cells, Taekeun Kim

Theses and Dissertations

With the limited fossil fuel reserve and increased power demand, polymer electrolyte membrane fuel cells (PEMFC) have been considered to be a promising alternative to the current energy consumption mode due to its high energy conversion, high efficiency, and zero emissions. However, high cost, poor stability, and sluggish kinetic for oxygen reduction reaction (ORR) of Pt/C cathode catalysts are obstacles for the commercialization of PEMFC for automotive application. The observed poor stability is attributed to a corrosion of carbon supports due to low pH, high temperature, and high anodic potentials (1.0-1.5 V) at the cathode interface during start-up/shutdown conditions. Electrochemical …


The Synthesis Of Solid Supported Palladium Nanoparticles: Effective Catalysts For Batch And Continuous Cross Coupling Reactions, Kendra W. Brinkley Jan 2015

The Synthesis Of Solid Supported Palladium Nanoparticles: Effective Catalysts For Batch And Continuous Cross Coupling Reactions, Kendra W. Brinkley

Theses and Dissertations

Catalysis is one of the pillars of the chemical industry. While the use of catalyst is typically recognized in the automobile industry, their impact is more widespread as; catalysts are used in the synthesis of 80% of the US commercial chemicals. Despite the improved selectivity provided by catalyst, process inefficiencies still threaten the sustainability of a number of synthesis methods, especially in the pharmaceutical industry. Recyclable solid supported catalysts offer a unique opportunity to address these inefficiencies. Such systems coupled with continuous synthesis techniques, have the potential to significantly reduce the waste to desired product ratio (E-factor) of the production …


Designed Synthesis Of Nanoporous Organic Polymers For Selective Gas Uptake And Catalytic Applications, Pezhman Arab Jan 2015

Designed Synthesis Of Nanoporous Organic Polymers For Selective Gas Uptake And Catalytic Applications, Pezhman Arab

Theses and Dissertations

Design and synthesis of porous organic polymers have attracted considerable attentions during the past decade due to their wide range of applications in gas storage, gas separation, energy conversion, and catalysis. Porous organic polymers can be pre-synthetically and post-synthetically functionalized with a wide variety of functionalities for desirable applications. Along these pursuits, we introduced new synthetic strategies for preparation of porous organic polymers for selective CO2 capture.

Porous azo-linked polymers (ALPs) were synthesized by an oxidative reaction of amine-based monomers using copper(I) as a catalyst which leads to azo-linkage formation. ALPs exhibit high surface areas of up to 1200 …