Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Analog Spiking Neuromorphic Circuits And Systems For Brain- And Nanotechnology-Inspired Cognitive Computing, Xinyu Wu Dec 2016

Analog Spiking Neuromorphic Circuits And Systems For Brain- And Nanotechnology-Inspired Cognitive Computing, Xinyu Wu

Boise State University Theses and Dissertations

Human society is now facing grand challenges to satisfy the growing demand for computing power, at the same time, sustain energy consumption. By the end of CMOS technology scaling, innovations are required to tackle the challenges in a radically different way. Inspired by the emerging understanding of the computing occurring in a brain and nanotechnology-enabled biological plausible synaptic plasticity, neuromorphic computing architectures are being investigated. Such a neuromorphic chip that combines CMOS analog spiking neurons and nanoscale resistive random-access memory (RRAM) using as electronics synapses can provide massive neural network parallelism, high density and online learning capability, and hence, paves …


An Unsupervised Fluoroscopic Analysis Of Knee Joint Kinematics, Charles Scott, Elisa H. Barney Smith Jan 2006

An Unsupervised Fluoroscopic Analysis Of Knee Joint Kinematics, Charles Scott, Elisa H. Barney Smith

Electrical and Computer Engineering Faculty Publications and Presentations

Knowledge of the three dimensional positions of bones at a joint as a function of time is required to accurately model joint kinematics. 3-D bone geometry data from a static computer tomography (CT) images can be combined with time sequence information from 2-D video fluoroscopy images to produce 3-D position data over time. The process involves creating virtual X-rays from the CT image through digitally reconstructed radiograph (DRR) projections. Historically, the process of matching the 3-D and 2-D data has required human interaction. We have eliminated the need for manual initialization using a Monte Carlo technique with a variable search …