Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Boise State University

Discipline
Keyword
Publication Year
Publication
Publication Type

Articles 91 - 109 of 109

Full-Text Articles in Biomedical Engineering and Bioengineering

Weightlifting Performance Is Related To Kinematic And Kinetic Patterns Of The Hip And Knee Joints, Kristof Kipp, Josh Redden, Michelle B. Sabick, Chad Harris Jul 2012

Weightlifting Performance Is Related To Kinematic And Kinetic Patterns Of The Hip And Knee Joints, Kristof Kipp, Josh Redden, Michelle B. Sabick, Chad Harris

Mechanical and Biomedical Engineering Faculty Publications and Presentations

The purpose of this study was to investigate correlations between biomechanical outcome measures and weightlifting performance. Joint kinematics and kinetics of the hip, knee, and ankle were calculated while ten subjects performed a clean at 85% of 1-RM. Kinematic and kinetic time-series patterns were extracted with principal components analysis. Discrete scores for each time-series pattern were calculated and used to determine how each pattern was related to body-mass normalized 1-RM. Two hip kinematic and two knee kinetic patterns were significantly correlated with relative 1-RM. The kinematic patterns captured hip and trunk motions during the first pull and hip joint motion …


Kinematic And Kinetic Synergies Of The Lower Extremities During The Pull In Olympic Weightlifting, Kristof Kipp, Josh Redden, Michelle Sabick, Chad Harris Jul 2012

Kinematic And Kinetic Synergies Of The Lower Extremities During The Pull In Olympic Weightlifting, Kristof Kipp, Josh Redden, Michelle Sabick, Chad Harris

Mechanical and Biomedical Engineering Faculty Publications and Presentations

The purpose of this study was to identify multijoint lower extremity kinematic and kinetic synergies in weightlifting and compare these synergies between joints and across different external loads. Subjects completed sets of the clean exercise at loads equal to 65, 75, and 85% of their estimated 1-RM. Functional data analysis was used to extract principal component functions (PCF's) for hip, knee, and ankle joint angles and moments of force during the pull phase of the clean at all loads. The PCF scores were then compared between joints and across loads to determine how much of each PCF was present at …


Gpu-Accelerated Large-Eddy Simulation Of Turbulent Channel Flows, Rey Deleon, Inanc Senocak Jan 2012

Gpu-Accelerated Large-Eddy Simulation Of Turbulent Channel Flows, Rey Deleon, Inanc Senocak

Mechanical and Biomedical Engineering Faculty Publications and Presentations

High performance computing clusters that are augmented with cost and power efficient graphics processing unit (GPU) provide new opportunities to broaden the use of large-eddy simulation technique to study high Reynolds number turbulent flows in fluids engineering applications. In this paper, we extend our earlier work on multi-GPU acceleration of an incompressible Navier-Stokes solver to include a large-eddy simulation (LES) capability. In particular, we implement the Lagrangian dynamic subgrid scale model and compare our results against existing direct numerical simulation (DNS) data of a turbulent channel flow at Reτ = 180. Overall, our LES results match fairly well with …


Lower Extremity Biomechanics During Weightlifting Exercise Vary Across Joint And Load, Kristof Kipp, Chad Harris, Michelle B. Sabick May 2011

Lower Extremity Biomechanics During Weightlifting Exercise Vary Across Joint And Load, Kristof Kipp, Chad Harris, Michelle B. Sabick

Mechanical and Biomedical Engineering Faculty Publications and Presentations

The purpose of this study was to determine the effect of load on lower extremity biomechanics during the pull-phase of the clean. Kinematic and kinetic data of the three joints of the lower extremity were collected while participants performed multiple sets of cleans at three percentages: 65, 75, and 85% of 1-Reptition maximum (RM). General linear models with repeated measures were used to assess the influence of load on angular velocities, net torques, powers, and rates of torque development at the ankle, knee, and hip joint. The results suggest that the biomechanical demands required from the lower extremities change with …


A Full-Depth Amalgamated Parallel 3d Geometric Multigrid Solver For Gpu Clusters, Dana A. Jacobsen, Inanc Senocak Jan 2011

A Full-Depth Amalgamated Parallel 3d Geometric Multigrid Solver For Gpu Clusters, Dana A. Jacobsen, Inanc Senocak

Mechanical and Biomedical Engineering Faculty Publications and Presentations

Numerical computations of incompressible flow equations with pressure-based algorithms necessitate the solution of an elliptic Poisson equation, for which multigrid methods are known to be very efficient. In our previous work we presented a dual-level (MPI-CUDA) parallel implementation of the Navier-Stokes equations to simulate buoyancy-driven incompressible fluid flows on GPU clusters with simple iterative methods while focusing on the scalability of the overall solver. In the present study we describe the implementation and performance of a multigrid method to solve the pressure Poisson equation within our MPI-CUDA parallel incompressible flow solver. Various design decisions and algorithmic choices for multigrid methods …


Scalability Of Incompressible Flow Computations On Multi-Gpu Clusters Using Dual-Level And Tri-Level Parallelism, Dana A. Jacobsen, Inanc Senocak Jan 2011

Scalability Of Incompressible Flow Computations On Multi-Gpu Clusters Using Dual-Level And Tri-Level Parallelism, Dana A. Jacobsen, Inanc Senocak

Mechanical and Biomedical Engineering Faculty Publications and Presentations

High performance computing using graphics processing units (GPUs) is gaining popularity in the scientific computing field, with many large compute clusters being augmented with multiple GPUs in each node. We investigate hybrid tri-level (MPI-OpenMP-CUDA) parallel implementations to explore the efficiency and scalability of incompressible flow computations on GPU clusters up to 128 GPUS. This work details some of the unique issues faced when merging fine-grain parallelism on the GPU using CUDA with coarse-grain parallelism using OpenMP for intra-node and MPI for inter-node communication. Comparisons between the tri-level MPI-OpenMP-CUDA and dual-level MPI-CUDA implementations are shown using computationally large computational fluid dynamics …


Individual Muscle Contributions To The Axial Knee Joint Contact Force During Normal Walking, Kotaro Sasaki, Richard R. Neptune Oct 2010

Individual Muscle Contributions To The Axial Knee Joint Contact Force During Normal Walking, Kotaro Sasaki, Richard R. Neptune

Mechanical and Biomedical Engineering Faculty Publications and Presentations

Muscles are significant contributors to the high joint forces developed in the knee during human walking. Not only do muscles contribute to the knee joint forces by acting to compress the joint, but they also develop joint forces indirectly through their contributions to the ground reaction forces via dynamic coupling. Thus, muscles can have significant contributions to forces at joints they do not span. However, few studies have investigated how the major lower-limb muscles contribute to the knee joint contact forces during walking. The goal of this study was to use a muscle-actuated forward dynamics simulation of walking to identify …


Application Of A Bayesian Inference Method To Reconstruct Short-Range Atmospheric Dispersion Events, Inanc Senocak Jul 2010

Application Of A Bayesian Inference Method To Reconstruct Short-Range Atmospheric Dispersion Events, Inanc Senocak

Mechanical and Biomedical Engineering Faculty Publications and Presentations

In the event of an accidental or intentional release of chemical or biological (CB) agents into the atmosphere, first responders and decision makers need to rapidly locate and characterize the source of dispersion events using limited information from sensor networks. In this study the stochastic event reconstruction tool (SERT) is applied to a subset of the Fusing Sensor Information from Observing Networks (FUSION) Field Trial 2007 (FFT 07) database. The inference in SERT is based on Bayesian inference with Markov chain Monte Carlo (MCMC) sampling. SERT adopts a probability model that takes into account both positive and zero-reading sensors. In …


Using The Continuous Wavelet Transform To Characterize Differences Between Impact Signals From Non-Cleated And Cleated Turf Shoes, Wayne Robert Fischer May 2010

Using The Continuous Wavelet Transform To Characterize Differences Between Impact Signals From Non-Cleated And Cleated Turf Shoes, Wayne Robert Fischer

Boise State University Theses and Dissertations

The continuous wavelet transform was used to characterize the time-frequency differences between impact forces from non-cleated and cleated turf shoes among male football athletes who perform cut and run activities. This research is significant because it elucidates how athletes experience different impact force and torque frequency content based on the type of shoe they are wearing. The complex Morlet mother wavelet was used to analyze all ground reaction force and vertical ground reaction moment signals to create time-frequency power spectrum plots. For each signal, a statistical confidence interval was calculated and displayed along with the cone of influence caused by …


Effect Of Loading Condition On Traction Coefficient Between Shoes And Artificial Turf Surfaces, Seth M. Kuhlman, Michelle B. Sabick, Ronald Pfeiffer, Benjamin Cooper, Jackie Forhan Apr 2010

Effect Of Loading Condition On Traction Coefficient Between Shoes And Artificial Turf Surfaces, Seth M. Kuhlman, Michelle B. Sabick, Ronald Pfeiffer, Benjamin Cooper, Jackie Forhan

Mechanical and Biomedical Engineering Faculty Publications and Presentations

Background. The interaction between a shoe and a turf surface is highly complex and difficult to characterize. Over the three decades since artificial turf was introduced, researchers have attempted to understand the traction caused by the interaction. However, some of the methodologies used for traction measurements have not capitalized on advances in currently available technology for testing and most testing conditions have not simulated realistic physiological loads.

Method of Approach. To assess the effect of test condition on traction results, the newly designed TurfBuster testing device was used to collect traction data on FieldTurf™ brand artificial turf under varying conditions. …


Influence Of Towing Force Magnitude On The Kinematics Of Supramaximal Sprinting, David A. Clark, Seth Kuhlman, Michelle B. Sabick, Ronald P. Pfeiffer, Nicole A. Knigge Jul 2009

Influence Of Towing Force Magnitude On The Kinematics Of Supramaximal Sprinting, David A. Clark, Seth Kuhlman, Michelle B. Sabick, Ronald P. Pfeiffer, Nicole A. Knigge

Mechanical and Biomedical Engineering Faculty Publications and Presentations

The purpose of this study was to determine the influence of towing force magnitude on the kinematics of supramaximal sprinting. Ten high school and collegiate aged track and field athletes ran 60m maximal sprints under 5 different conditions: non-towed (NT), Tow A (2.0% body weight), Tow B (2.8%BW), Tow C (3.8%BW), and Tow D (4.7%BW). Three-dimensional kinematics of a 4-segment model of the right side of the body were collected starting at the 35m point of the trial. Significant differences were observed in stride length (SL) and horizontal velocity of the center of mass (VH) during Tow C and Tow …


The Relationships Between Muscle, External, Internal And Joint Mechanical Work During Normal Walking, Kotaro Sasaki, Richard R. Neptune, Steven A. Kautz Mar 2009

The Relationships Between Muscle, External, Internal And Joint Mechanical Work During Normal Walking, Kotaro Sasaki, Richard R. Neptune, Steven A. Kautz

Mechanical and Biomedical Engineering Faculty Publications and Presentations

Muscle mechanical work is an important biomechanical quantity in human movement analyses and has been estimated using different quantities including external, internal and joint work. The goal of this study was to investigate the relationships between these traditionally used estimates of mechanical work in human walking and to assess whether they can be used as accurate estimates of musculotendon and/or muscle fiber work. A muscle-actuated forward dynamics walking simulation was generated to quantify each of the mechanical work measures. Total joint work (i.e. the time integral of absolute joint power over a full gait cycle) was found to underestimate total …


Rapid-Response Urban Cfd Simulations Using A Gpu Computing Paradigm On Desktop Supercomputers, Inanc Senocak, Julien C. Thibault, Matthew Caylor Jan 2009

Rapid-Response Urban Cfd Simulations Using A Gpu Computing Paradigm On Desktop Supercomputers, Inanc Senocak, Julien C. Thibault, Matthew Caylor

Mechanical and Biomedical Engineering Faculty Publications and Presentations

In the event of chemical or biological (CB) agent attacks or accidents, first-responders need hazard prediction data to launch effective emergency response action. Accurate and timely knowledge of the wind fields in urban areas is critically important to identify and project the extent of CB agent dispersion to determine the hazard-zone. In their 2008 report (GAO-08-180), U.S. Government Accountability Office has reported that first responders are limited in their ability to detect and model hazardous releases in urban environments. The current set of modeling tools for contaminant dispersion in urban environments rely on empirical assumptions with diagnostic equations (Wang et …


Cuda Implementation Of A Navier-Stokes Solver On Multi-Gpu Desktop Platforms For Incompressible Flows, Julien C. Thibault, Inanc Senocak Jan 2009

Cuda Implementation Of A Navier-Stokes Solver On Multi-Gpu Desktop Platforms For Incompressible Flows, Julien C. Thibault, Inanc Senocak

Mechanical and Biomedical Engineering Faculty Publications and Presentations

Graphics processor units (GPU) that are traditionally designed for graphics rendering have emerged as massively-parallel "co-processors" to the central processing unit (CPU). Small-footprint desktop supercomputers with hundreds of cores that can deliver teraflops peak performance at the price of conventional workstations have been realized. A computational fluid dynamics (CFD) simulation capability with rapid computational turnaround time has the potential to transform engineering analysis and design optimization procedures. We describe the implementation of a Navier-Stokes solver for incompressible fluid flow using desktop platforms equipped with multi-GPUs. Specifically, NVIDIA’s Compute Unified Device Architecture (CUDA) programming model is used to implement the discretized …


Stochastic Event Reconstruction Of Atmospheric Contaminant Dispersion Using Bayesian Inference, Inanc Senocak, Nicolas W. Hengartner, Margaret B. Short, W. Brent Daniel Oct 2008

Stochastic Event Reconstruction Of Atmospheric Contaminant Dispersion Using Bayesian Inference, Inanc Senocak, Nicolas W. Hengartner, Margaret B. Short, W. Brent Daniel

Mechanical and Biomedical Engineering Faculty Publications and Presentations

Environmental sensors have been deployed in various cities for early detection of contaminant releases into the atmosphere. Event reconstruction and improved dispersion modeling capabilities are needed to estimate the extent of contamination, which is required to implement effective strategies in emergency management. To this end, a stochastic event reconstruction capability that can process information from an environmental sensor network is developed. A probability model is proposed to take into account both zero and non-zero concentration measurements that can be available from a sensor network because of a sensor’s specified limit of detection. The inference is based on the Bayesian paradigm …


The Party’S Over: Sustaining Support Programs When The Funding Is Done, John Gardner, Pat Pyke, Cheryl Schrader, Janet M. Callahan, Amy Moll Jun 2008

The Party’S Over: Sustaining Support Programs When The Funding Is Done, John Gardner, Pat Pyke, Cheryl Schrader, Janet M. Callahan, Amy Moll

Mechanical and Biomedical Engineering Faculty Publications and Presentations

In the lifecycle of an engineering education grant, the phase where best practices are sustained and disseminated is perhaps the most crucial stage for maximizing impact. Yet this transition phase often receives the least attention as project team enthusiasm can wane, while funding tapers off, and faculty priorities are pulled in other directions. There are numerous obstacles associated with sustaining program changes, even those perceived as very valuable. Typical challenges are: What happens when the funding runs out? What grant-developed programs should be sustained by the university? Does the institution need to internally allocate resources in an annual budget large …


Investigation Of Reynolds Stresses In A 3d Idealized Urban Area Using Large Eddy Simulation, Akshay A. Gowardhan, E. R. Pardyjak, Inanc Senocak, M. J. Brown Sep 2007

Investigation Of Reynolds Stresses In A 3d Idealized Urban Area Using Large Eddy Simulation, Akshay A. Gowardhan, E. R. Pardyjak, Inanc Senocak, M. J. Brown

Mechanical and Biomedical Engineering Faculty Publications and Presentations

High resolution, large eddy simulation (LES) of neutral flow through an array of cubes has been conducted with periodic boundary conditions in lateral and longitudinal directions. In this paper, we first describe the model formulation and validate the simulation by comparing the mean flow and turbulence statistics with wind-tunnel experimental data from a cube array of buildings. The LES model is then used to investigate the physical mechanisms that lead to the low turbulent stresses that have been reported in the lower half of the urban canopy layer. To do this, the urban boundary layer is conceptually broken down into …


Lower Extremity Mechanics During Cutting Tasks In Different Shoe-Turf Combinations, Rafael Garcilazo Apr 2007

Lower Extremity Mechanics During Cutting Tasks In Different Shoe-Turf Combinations, Rafael Garcilazo

McNair Scholars Research Journal

The demands placed on the lower extremity when performing jumping and cutting maneuvers are depending, in part, on the interaction between the playing surface and the athlete's footwear. Higher demands are likely to result in increased incidence of injury, so for safety reasons it is important to quantify how the shoe-turf interface affects joint loads. The purpose of this study is to compare the forces on the lower extremity while landing and side cutting (rapid direction change at approximately 45 degrees) on artificial football turf with different styles of football cleats.


An Unsupervised Fluoroscopic Analysis Of Knee Joint Kinematics, Charles Scott, Elisa H. Barney Smith Jan 2006

An Unsupervised Fluoroscopic Analysis Of Knee Joint Kinematics, Charles Scott, Elisa H. Barney Smith

Electrical and Computer Engineering Faculty Publications and Presentations

Knowledge of the three dimensional positions of bones at a joint as a function of time is required to accurately model joint kinematics. 3-D bone geometry data from a static computer tomography (CT) images can be combined with time sequence information from 2-D video fluoroscopy images to produce 3-D position data over time. The process involves creating virtual X-rays from the CT image through digitally reconstructed radiograph (DRR) projections. Historically, the process of matching the 3-D and 2-D data has required human interaction. We have eliminated the need for manual initialization using a Monte Carlo technique with a variable search …