Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Kinesiology

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 123

Full-Text Articles in Biomedical Engineering and Bioengineering

Quantitative Evaluation Of Geared Manual Wheelchair Mobility In Individuals With Spinal Cord Injury: An Integrative Approach, Omid Jahanian May 2019

Quantitative Evaluation Of Geared Manual Wheelchair Mobility In Individuals With Spinal Cord Injury: An Integrative Approach, Omid Jahanian

Theses and Dissertations

The purpose of this dissertation is to quantify the effects of using geared wheelchair wheels on upper extremity biomechanics and energy expenditure during functional mobility tasks in individuals with spinal cord injury (SCI). The effects of using geared wheels on hand-rim biomechanics, glenohumeral joint dynamics, and shoulder muscle activity were investigated during manual wheelchair propulsion over tiled and carpeted level-floors and up a ramp in low gear (1.5:1) and standard gear (1:1) conditions. The results for the hand-rim biomechanics indicated that regardless of the terrain, using the geared wheels in the low gear condition significantly decreased the ...


Volumetric Muscle Loss: The Role Of Physical Activity And Autologous Repair On Force Recovery And Signaling Pathways, Richard Perry May 2019

Volumetric Muscle Loss: The Role Of Physical Activity And Autologous Repair On Force Recovery And Signaling Pathways, Richard Perry

Theses and Dissertations

Volumetric muscle loss affects both military and civilian persons. The hallmark of this injury is incomplete muscle regeneration, excessive fibrosis, and chronic inflammatory signaling resulting in permanent functional loss. Since permanent functional loss drastically reduces quality of life, many studies have been conducted to improve force recovery. Current scientific literature considers a repair strategy of either devitalized scaffolds infused with growth factors or viable tissue plus activating factors to be the more promising interventions for optimal force recovery. PURPOSE The purpose of this study is to incorporate autologous repair and physical activity and observe the effects of muscle force recovery ...


Kinematics During Knee Extension, Lunge, And Chair Rise, Center For Orthopaedic Biomechanics, Kevin Shelburne, Phd, Michael D. Harris, Phd, Vasiliki Kefala, Donald R. Hume, Bradley S. Davidson, A. J. Cyr, R. H. Kim, A. A. Ali, E. M. Mannen Apr 2019

Kinematics During Knee Extension, Lunge, And Chair Rise, Center For Orthopaedic Biomechanics, Kevin Shelburne, Phd, Michael D. Harris, Phd, Vasiliki Kefala, Donald R. Hume, Bradley S. Davidson, A. J. Cyr, R. H. Kim, A. A. Ali, E. M. Mannen

Living Kinematics of the Knee

No abstract provided.


The Time Of Slip Onset During Stance Influences The Characteristics Of The Unconstrained Perturbation, Corbin Rasmussen, Nathaniel Hunt Mar 2019

The Time Of Slip Onset During Stance Influences The Characteristics Of The Unconstrained Perturbation, Corbin Rasmussen, Nathaniel Hunt

Student Research and Creative Activity Fair

Falls pose a significant health hazard, resulting in devastating injuries like broken wrists, fractured hips, and traumatic brain injuries that exceed $50 billion in U.S. medical costs. To address these risks, biomechanists have subjected individuals to simulated slips in order to study the factors that lead to falls. These studies have focused on slips that happen immediately after heel-strike and are unnaturally restricted by the methods used to cause the slip. Therefore, the effects of unconstrained slips that occur throughout stance phase are unknown. To address this knowledge gap, we examined the relationship between the timing of slip onset ...


Feasibility And Analysis Of A Hybrid Spacesuit Architecture For Planetary Surface Exploration, Roger Huerta I Lluch Jan 2019

Feasibility And Analysis Of A Hybrid Spacesuit Architecture For Planetary Surface Exploration, Roger Huerta I Lluch

Aerospace Engineering Sciences Graduate Theses & Dissertations

This Thesis presents a novel hybrid spacesuit architecture concept to enable planetary exploration by combining mechanical counterpressure (MCP) with gas-pressurization (GP). This conceptual design has the potential to offer a quantifiable increase in mobility, increases in safety through pressure layer redundancy, and decreased pre-breathe time to improve operational efficiency.

The Thesis performs an engineering study on the concept. First, to assess the feasibility and benefit of implementing two separate pressure layers in the spacesuit, a trade analysis of the design space was performed by numerically modelling different spacesuit-related parameters. The analysis is done considering the combined system performance across different ...


Walking For Object Transport: An Examination Of The Coordinative Adaptations To Locomotor, Perceptual, And Manual Task Constraints, Avelino Amado Jan 2019

Walking For Object Transport: An Examination Of The Coordinative Adaptations To Locomotor, Perceptual, And Manual Task Constraints, Avelino Amado

Doctoral Dissertations

The goal of this dissertation was to understand how the intrinsic dynamics of gait adapt to support the performance of an ecologically relevant object transport task. A common object transport task is walking with a cup of water. Because the water can move relatively independent of the cup, the cup and water system is classified as a complex object. To model this task participants carried a cup with a wooden lid placed on top. On the lid there was a circular region with the same circumference as the cup and a ball. The object of the task was to keep ...


Dynamic Balance Measurement And Quantitative Assessment Using Wearable Plantar-Pressure Insoles In A Pose-Sensed Virtual Environment, Cunguang Lou, Chenyao Pang, Congrui Jing, Shuo Wang, Xufeng He, Xiaoguang Liu, Lei Huang, Feng Lin, Xiuling Liu, Hongrui Wang Nov 2018

Dynamic Balance Measurement And Quantitative Assessment Using Wearable Plantar-Pressure Insoles In A Pose-Sensed Virtual Environment, Cunguang Lou, Chenyao Pang, Congrui Jing, Shuo Wang, Xufeng He, Xiaoguang Liu, Lei Huang, Feng Lin, Xiuling Liu, Hongrui Wang

Open Access Articles

The center of plantar pressure (COP) reflects the dynamic balance of subjects to a certain extent. In this study, wearable pressure insoles are designed, body pose measure is detected by the Kinect sensor, and a balance evaluation system is formulated. With the designed games for the interactive actions, the Kinect sensor reads the skeletal poses to judge whether the desired action is performed, and the pressure insoles simultaneously collect the plantar pressure data. The COP displacement and its speed are calculated to determine the body sway and the ability of balance control. Significant differences in the dispersion of the COP ...


A Metabolic Energy Expenditure Model With A Continuous First Derivative And Its Application To Predictive Simulations Of Gait, Anne D. Koelewijn, Eva Dorschky, Antonie J. Van Den Bogert Jul 2018

A Metabolic Energy Expenditure Model With A Continuous First Derivative And Its Application To Predictive Simulations Of Gait, Anne D. Koelewijn, Eva Dorschky, Antonie J. Van Den Bogert

Antonie J. van den Bogert

Whether humans minimize metabolic energy in gait is unknown. Gradient-based optimization could be used to predict gait without using walking data, but requires a twice di#11;erentiable metabolic energy model. Therefore, the metabolic energy model of Umberger et al. (2003) was adapted to be twice di#11;fferentiable. Predictive simulations of a reaching task and gait were solved using this continuous model and by minimizing e#11;ffort. The reaching task simulation showed that energy minimization predicts unrealistic movements when compared to e#11;ffort minimization. The predictive gait simulations showed that objectives other than metabolic energy are also ...


Comparative Analysis Of Physiological Measurements And Environmental Metrics On Predicting Heat Stress Related Events, Mckenzie Lee Barlow Jun 2018

Comparative Analysis Of Physiological Measurements And Environmental Metrics On Predicting Heat Stress Related Events, Mckenzie Lee Barlow

Master's Theses and Project Reports

Exposure to high heat and humidity can lead to serious health risks, including heat exhaustion and heat stroke. Wet Bulb Globe Temperature (WBGT) and heat index have historically been used to predict heat stress events, but individualized factors are not included in the measurement. It has been shown that there is a relationship between cardiovascular measurements and heat stress, which could be used to measure heat stress risk on an individual level. Research has been done to find relationships between cardiovascular metrics in a workplace environment, however the study did not include the use of a controlled environment as a ...


Longitudinal Tracking Of Physiological State With Electromyographic Signals., Robert Warren Stallard May 2018

Longitudinal Tracking Of Physiological State With Electromyographic Signals., Robert Warren Stallard

Electronic Theses and Dissertations

Electrophysiological measurements have been used in recent history to classify instantaneous physiological configurations, e.g., hand gestures. This work investigates the feasibility of working with changes in physiological configurations over time (i.e., longitudinally) using a variety of algorithms from the machine learning domain. We demonstrate a high degree of classification accuracy for a binary classification problem derived from electromyography measurements before and after a 35-day bedrest. The problem difficulty is increased with a more dynamic experiment testing for changes in astronaut sensorimotor performance by taking electromyography and force plate measurements before, during, and after a jump from a small ...


Comparison Of Thermal Glove Wrist-Hand Orthoses In Their Effectiveness On Rheumatoid Arthritis, Brittany E. Mott Mar 2018

Comparison Of Thermal Glove Wrist-Hand Orthoses In Their Effectiveness On Rheumatoid Arthritis, Brittany E. Mott

Graduate Theses and Dissertations

Rheumatoid arthritis (RA) is an autoimmune disease affecting nearly 1% of the world’s population with symptoms such as inflammation, pain, and reduced strength [1]. Physicians and scientists work to develop pharmaceuticals and medical devices aimed at decreasing the symptoms associated with RA to better the lives of those affected. One of the most recent developments is the addition of thermal therapy gloves to the array of upper limb orthoses available to patients with RA. It was hypothesized that this study will show that orthoses in the form of thermal therapy gloves are beneficial to the patients by reducing symptoms ...


No-Releasing Polymers And Uses Thereof, Megan C. Frost, Genevieve Romanowicz Feb 2018

No-Releasing Polymers And Uses Thereof, Megan C. Frost, Genevieve Romanowicz

Michigan Tech Patents

The present invention provides stable, photosensitive polymers that release NO response to intensity and wavelength of light, methods of making such polymers and methods using such polymers.


Predictive Modeling Of Hip Dislocation: Assessment Of Surgical And Patient Factors To Reduce The Occurrence Of Hip Instability And Adverse Clinical Outcomes, Daniel N. Huff Jan 2018

Predictive Modeling Of Hip Dislocation: Assessment Of Surgical And Patient Factors To Reduce The Occurrence Of Hip Instability And Adverse Clinical Outcomes, Daniel N. Huff

Electronic Theses and Dissertations

Instability and dislocation remain leading indications for revision of primary Total Hip Arthroplasty (THA). Many studies have addressed the links between implant design and propensity for dislocation, however a comprehensive review of the ability of modern THA constructs to protect against joint instability is needed.

Accordingly, the objective of this study is to provide objective data about THA risks to be considered in the treatment algorithm to protect against adverse joint loading conditions and joint instability. Adverse loading conditions were assessed in a population of activities of daily living using data from telemetric hip implant representation in an FE simulation ...


Characterizing Anisotropy In Fibrous Soft Materials By Mr Elastography Of Slow And Fast Shear Waves, John Larson Schmidt Dec 2017

Characterizing Anisotropy In Fibrous Soft Materials By Mr Elastography Of Slow And Fast Shear Waves, John Larson Schmidt

Engineering and Applied Science Theses & Dissertations

The general objective of this work was to develop experimental methods based on magnetic resonance elastography (MRE) to characterize fibrous soft materials. Mathematical models of tissue biomechanics capable of predicting injury, such as traumatic brain injury (TBI), are of great interest and potential. However, the accuracy of predictions from such models depends on accuracy of the underlying material parameters. This dissertation describes work toward three aims. First, experimental methods were designed to characterize fibrous materials based on a transversely isotropic material model. Second, these methods are applied to characterize the anisotropic properties of white matter brain tissue ex vivo. Third ...


Rehabilitating Asymmetric Gait Using Asymmetry, Tyagi Ramakrishnan Nov 2017

Rehabilitating Asymmetric Gait Using Asymmetry, Tyagi Ramakrishnan

Graduate Theses and Dissertations

Human gait is a complex process that involves the coordination of the central nervous and muscular systems. A disruption to the either system results in the impairment of a person’s ability to walk. Impairments can be caused by neurological disorders such as stroke and physical conditions like amputation. There is not a standardized method to quantitatively assess the gait asymmetry of affected subjects. The purpose of this research is to understand the fundamental aspects of asymmetrical effects on the human body and improve rehabilitation techniques and devices. This research takes an interdisciplinary approach to address the limitations with current ...


Mechanobiology Of Epithelial Clusters In Ecms Of Diverse Mechanical Properties, Samila Nasrollahi Aug 2017

Mechanobiology Of Epithelial Clusters In Ecms Of Diverse Mechanical Properties, Samila Nasrollahi

Engineering and Applied Science Theses & Dissertations

Cell clusters reside in complex extracellular matrices (ECMs) of varying mechanical properties. Epithelial cells sense and translate the mechanical cues presented by the surrounding ECM into biochemical signals through a process called ‘mechanotransduction’, which controls fundamental aspects of disease and development. During the course of metastasis, mechanical changes in the tumor microenvironment can lead to declustering of epithelial cells through a process called epithelial-to-mesenchymal transition (EMT). Throughout different steps of metastasis, escaped epithelial clusters encounter heterogeneous tissues of varying mechanical properties that ultimately influence their behavior in distant locations within the body. This dissertation investigates the mechanobiology of epithelial clusters ...


An Array Of Circular Dielectrophoresis Traps To Separate And Charaterize Individual Microparticles From Population, Hwangjae Lee Aug 2017

An Array Of Circular Dielectrophoresis Traps To Separate And Charaterize Individual Microparticles From Population, Hwangjae Lee

Theses and Dissertations

Dielectrophoretic traps have been broadly studied in light of their many advantages of high controllability, ease of operation, and high efficiency. In the previous studies, however, it was challenging to count captured particles or required work to capture particles. In the thesis, an array of circular dielectrophoresis (DEP) traps was developed and tested to manipulate population of microparticles in single particle level. The circular DEP traps enable more precise control of the force field than conventionally used interdigitated electrodes due to its omnidirectional and symmetric properties. The location of the captured microparticle inside the trap was confirmed by both of ...


Optimization Of Prosthetic Hands: Utilizing Modularity To Improve Grip Force, Grasp, And Versatility, Jordan William Harris Aug 2017

Optimization Of Prosthetic Hands: Utilizing Modularity To Improve Grip Force, Grasp, And Versatility, Jordan William Harris

UNLV Theses, Dissertations, Professional Papers, and Capstones

It has been demonstrated that although many varieties of upper limb prosthetics exist, commercially available prosthetics are outdated and unsatisfactory. Ineffectiveness and limitations have led to some prosthesis wearers having to own multiple devices, whereas others have given up on them entirely. Even though ample research has been conducted to design and test new hand designs, the industry appears to rest in an overall stagnated state.

It was proposed here, that one problem with prosthetic research is an excess of variables involved in testing, and therefore the improper application of the scientific method. It seems that each time a research ...


The Development Of A Platform Interface With The Use Of Virtual Reality To Enhance Upper-Extremity Prosthetic Training And Rehabilitation, Ashley D. Knight Jun 2017

The Development Of A Platform Interface With The Use Of Virtual Reality To Enhance Upper-Extremity Prosthetic Training And Rehabilitation, Ashley D. Knight

Graduate Theses and Dissertations

This dissertation focuses on the investigation and development of an effective prosthetic training and rehabilitation platform with the use of virtual reality to facilitate an effective process to return amputees to the highest level of independence and functioning possible.

It has been reported that approximately 10 million people live with a limb loss worldwide, with around 30% being an upper-extremity amputee. The sudden loss of a hand or arm causes the loss of fine, coordinated movements, reduced joint range of motion (ROM), proprioceptive feedback and aesthetic appearance, all which can be improved with the use of a prosthesis and proper ...


Human Biomechanics Ii Course Project, Abdelaziz Mohammad Jun 2017

Human Biomechanics Ii Course Project, Abdelaziz Mohammad

Best Integrated Writing

Mohammad tested Human Arm Module PASCO ME-6807A, in order to determine some of the biomechanical characteristics, such as force, tension, instantaneous angular velocity, and acceleration vs. angular position required for various movements and arm positions in space.


Soft-Tissue Artifact Compensation For Electromagnetic Motion Capture, George T. Dickinson, Steven K. Charles Feb 2017

Soft-Tissue Artifact Compensation For Electromagnetic Motion Capture, George T. Dickinson, Steven K. Charles

Biomedical Engineering Western Regional Conference

This purpose of this study is to develop a soft-tissue artifact compensation algorithm for the upper arm using electromagnetic motion capture systems that can be implemented in a wide range of applications. This study focuses on compensation of humeral axial rotation and forearm axial rotation.


A Magnetic Resonance Compatible Knee Extension Ergometer, Youssef Jaber Jan 2017

A Magnetic Resonance Compatible Knee Extension Ergometer, Youssef Jaber

Masters Theses

The product of this thesis aims to enable the study of the biochemical and physical dynamics of the lower limbs at high levels of muscle tension and fast contraction speeds. This is accomplished in part by a magnetic resonance (MR) compatible ergometer designed to apply a load as a torque of up to 420 Nm acting against knee extension at speeds as high as 4.7 rad/s. The system can also be adapted to apply the load as a force of up to 1200 N acting against full leg extension. The ergometer is designed to enable the use of ...


Zonal Articular Cartilage Possesses Complex Mechanical Behavior Spanning Multiple Length Scales: Dependence On Chemical Heterogeneity, Anisotropy, And Microstructure, Joseph Anders Wahlquist Jan 2017

Zonal Articular Cartilage Possesses Complex Mechanical Behavior Spanning Multiple Length Scales: Dependence On Chemical Heterogeneity, Anisotropy, And Microstructure, Joseph Anders Wahlquist

Mechanical Engineering Graduate Theses & Dissertations

This work focused on characterizing the mechanical behavior of biological material in physiologically relevant conditions and at sub millimeter length scales. Elucidating the time, length scale, and directionally dependent mechanical behavior of cartilage and other biological materials is critical to adequately recapitulate native mechanosensory cues for cells, create computational models that mimic native tissue behavior, and assess disease progression. This work focused on three broad aspects of characterizing the mechanical behavior of articular cartilage. First, we sought to reveal the causes of time-dependent deformation and variation of mechanical properties with distance from the articular surface. Second, we investigated size dependence ...


Zonal Articular Cartilage Possesses Complex Mechanical Behavior Spanning Multiple Length Scales: Dependence On Chemical Heterogeneity, Anisotropy, And Microstructure, Joseph Anders Wahlquist Jan 2017

Zonal Articular Cartilage Possesses Complex Mechanical Behavior Spanning Multiple Length Scales: Dependence On Chemical Heterogeneity, Anisotropy, And Microstructure, Joseph Anders Wahlquist

Mechanical Engineering Graduate Theses & Dissertations

This work focused on characterizing the mechanical behavior of biological material in physiologically relevant conditions and at sub millimeter length scales. Elucidating the time, length scale, and directionally dependent mechanical behavior of cartilage and other biological materials is critical to adequately recapitulate native mechanosensory cues for cells, create computational models that mimic native tissue behavior, and assess disease progression. This work focused on three broad aspects of characterizing the mechanical behavior of articular cartilage. First, we sought to reveal the causes of time-dependent deformation and variation of mechanical properties with distance from the articular surface. Second, we investigated size dependence ...


Understanding The Mechanics Of Tissue Growth In Engineered Scaffolds: Case Of Cartilage Tissue, Umut Akalp Jan 2017

Understanding The Mechanics Of Tissue Growth In Engineered Scaffolds: Case Of Cartilage Tissue, Umut Akalp

Civil Engineering Graduate Theses & Dissertations

Tissue failure due to aging or diseases reduces the quality of life for individuals. In the case of cartilage tissue, the current solution is to use implants to fulfill the functional duties of native tissue. However, this approach has limitations, such as periodic replacement and number of the required operations. Tissue engineering provides an alternative approach in which the aim is to regenerate the native tissue by a population of cells encapsulated in a scaffold (i.e. hydrogels). Although this approach is promising, there are several limitations regarding the design of these scaffolds which can be overcome only by the ...


Biomechanics Of Concussion: The Importance Of Neck Tension, Ron Jadischke Jan 2017

Biomechanics Of Concussion: The Importance Of Neck Tension, Ron Jadischke

Wayne State University Dissertations

Linear and angular velocity and acceleration of the head are typically correlated to concussion. Despite improvements in helmet performance to reduce accelerations, a corresponding reduction in the incidence of concussion has not occurred (National Football League [NFL] 1996 – present).

There is compelling research that forces on and deformation to the brain stem are related to concussion. The brain stem is the center of control for respiration, blood pressure and heart rate and is the root of most cranial nerves. Injury to the brain stem is consistent with most symptoms of concussion reported in the National Football League and the National ...


Development Of A Finite Element Pelvis And Lower Extremity Model With Growth Plates For Pediatric Pedestrian Protection, Ming Shen Jan 2017

Development Of A Finite Element Pelvis And Lower Extremity Model With Growth Plates For Pediatric Pedestrian Protection, Ming Shen

Wayne State University Dissertations

Finite element (FE) model is a useful tool frequently used for investigating the injury mechanisms and designing protection countermeasures. At present, no 10 years old (YO) pedestrian FE model has been developed from appropriate anthropometries and validated against limitedly available impact response data. A 10 YO child FE pelvis and lower extremities (PLEX) model was established to fill the gap of lacking such models in this age group. The baseline model was validated against available pediatric postmortem human subjects (PMHS) test data and additional scaled adult data, then the PLEX model was integrated to build a whole-body FE model representing ...


Comparison Of Lumbo-Pelvic Kinematics During Trunk Forward Bending And Backward Return Between Patients With Acute Low Back Pain And Asymptomatic Controls, Iman Shojaei, Elizabeth G. Salt, Quenten L. Hooker, Linda R. Van Dillen, Babak Bazrgari Jan 2017

Comparison Of Lumbo-Pelvic Kinematics During Trunk Forward Bending And Backward Return Between Patients With Acute Low Back Pain And Asymptomatic Controls, Iman Shojaei, Elizabeth G. Salt, Quenten L. Hooker, Linda R. Van Dillen, Babak Bazrgari

Biomedical Engineering Faculty Publications

Background—Prior studies have reported differences in lumbo-pelvic kinematics during a trunk forward bending and backward return task between individuals with and without chronic low back pain; yet, the literature on lumbo-pelvic kinematics of patients with acute low back pain is scant. Therefore, the purpose of this study was set to investigate lumbo-pelvic kinematics in this cohort.

Methods—A case-control study was conducted to investigate the differences in pelvic and thoracic rotation along with lumbar flexion as well as their first and second time derivatives between females with and without acute low back pain. Participants in each group completed one ...


Microscale Investigation Of Thermo-Fluid Transport In The Transition Fil, Region Of An Evaporating Capillary Meniscus Using A Microgravity Environment, Kenneth D. Kihm, Jeffrey S. Allen, Kevin P. Hallinan, David M. Pratt Jul 2016

Microscale Investigation Of Thermo-Fluid Transport In The Transition Fil, Region Of An Evaporating Capillary Meniscus Using A Microgravity Environment, Kenneth D. Kihm, Jeffrey S. Allen, Kevin P. Hallinan, David M. Pratt

Kevin Hallinan

In order to enhance the fundamental understanding of thin film evaporation and thereby improve the critical design concept for two-phase heat transfer devices, microscale heat and mass transport is to be investigated for the transition film region using state-of-the-art optical diagnostic techniques. By utilizing a microgravity environment, the length scales of the transition film region can be extended sufficiently, from submicron to micron, to probe and measure the microscale transport fields which are affected by intermolecular forces. Extension of the thin film dimensions under microgravity will be achieved by using a conical evaporator made of a thin silicon substrate under ...


Toward Translating Near-Infrared Spectroscopy Oxygen Saturation Data For The Non-Invasive Prediction Of Spatial And Temporal Hemodynamics During Exercise, Laura M. Ellwein, Margaret M. Samyn, Michael E. Danduran, Sheila M. Schindler-Ivens, Stacy Liebham, John F. Ladisa Jr. Jul 2016

Toward Translating Near-Infrared Spectroscopy Oxygen Saturation Data For The Non-Invasive Prediction Of Spatial And Temporal Hemodynamics During Exercise, Laura M. Ellwein, Margaret M. Samyn, Michael E. Danduran, Sheila M. Schindler-Ivens, Stacy Liebham, John F. Ladisa Jr.

Exercise Science Faculty Research and Publications

Image-based computational fluid dynamics (CFD) studies conducted at rest have shown that atherosclerotic plaque in the thoracic aorta (TA) correlates with adverse wall shear stress (WSS), but there is a paucity of such data under elevated flow conditions. We developed a pedaling exercise protocol to obtain phase contrast magnetic resonance imaging (PC-MRI) blood flow measurements in the TA and brachiocephalic arteries during three-tiered supine pedaling at 130, 150, and 170 % of resting heart rate (HR), and relate these measurements to non-invasive tissue oxygen saturation (StO2) acquired by near-infrared spectroscopy (NIRS) while conducting the same protocol. Local quantification of WSS ...