Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Biomedical Engineering and Bioengineering

Effectiveness Of Group Kickboxing As A Means To Improve Gait And Balance In Individuals With Ms, Kurt Jackson, Kimberly Edginton Bigelow, Christina Cooper, Harold L. Merriman Nov 2015

Effectiveness Of Group Kickboxing As A Means To Improve Gait And Balance In Individuals With Ms, Kurt Jackson, Kimberly Edginton Bigelow, Christina Cooper, Harold L. Merriman

Harold L. Merriman

In recent years, there has been a particular emphasis on identifying and delivering appropriate therapeutic interventions that address the significant balance and gait impairments that affect individuals with multiple sclerosis (MS). Group interventions implemented in community settings have been especially of interest, including tai chi classes. Recently, the authors conducted a preliminary study to examine whether group kick-boxing, which requires more vigorous movements, might be a feasible intervention. Initial findings showed promise and led the authors to pursue a more rigorous follow-up study, with the objective of determining whether a 5-week group kickboxing class improved clinical measures of balance and …


Biomechanical Investigation Of Elite Place-Kicking, Chase M. Pfeifer Nov 2015

Biomechanical Investigation Of Elite Place-Kicking, Chase M. Pfeifer

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Many studies aim to understand the fundamentals of kicking commonly displayed by soccer players [4,6,10,16,17,18,24,25,28,29,30,34,36,38,40]. Of those studies, most are limited to a two-dimensional (2D) analysis using high-speed cameras for position tracking or utilizing electromyography to observe the activity of select muscles [4,6,18,25,29,36]. The few studies that investigate kicking using a three-dimensional (3D) model are limited in their position tracking capabilities and focus mainly on joint flexion potentials and foot speed.

This dissertation is a comprehensive biomechanical analysis (kinematic and EMG) of the field-goal place-kicking techniques of four elite kickers in American football. Data were compared and contrasted with ball …


Development Of A Muscle Model Parameter Calibration Method Via Passive Muscle Force Minimization, Allison Kinney, Benjamin J. Fregly Jul 2015

Development Of A Muscle Model Parameter Calibration Method Via Passive Muscle Force Minimization, Allison Kinney, Benjamin J. Fregly

Mechanical and Aerospace Engineering Faculty Publications

Computational predictions of subject-specific muscle and knee joint contact forces during walking may improve individual rehabilitation treatment design. Such predictions depend directly on specified model parameter values. However, model parameters are difficult to measure non-invasively. Methods for muscle model parameter calibration have been developed previously. However, it is currently unknown how the musculoskeletal system chooses muscle model parameter values. Previous studies have hypothesized that muscles avoid injury during walking by generating little passive force and operating in the ascending region of the force-length curve. This hypothesis suggests that muscle model parameter values may be selected by the body to minimize …


Synergy-Based Two-Level Optimization For Predicting Knee Contact Forces During Walking, Gil Serrancolí, Allison Kinney, Josep M. Font-Llagunes, Benjamin J. Fregly Jul 2015

Synergy-Based Two-Level Optimization For Predicting Knee Contact Forces During Walking, Gil Serrancolí, Allison Kinney, Josep M. Font-Llagunes, Benjamin J. Fregly

Mechanical and Aerospace Engineering Faculty Publications

Musculoskeletal models and optimization methods are combined to calculate muscle forces. Some model parameters cannot be experimentally measured due to the invasiveness, such as the muscle moment arms or the muscle and tendon lengths. Moreover, other parameters used in the optimization, such as the muscle synergy components, can be also unknown. The estimation of all these parameters needs to be validated to obtain physiologically consistent results. In this study, a two-step optimization problem was formulated to predict both muscle and knee contact forces of a subject wearing an instrumented knee prosthesis. In the outer level, muscle parameters were calibrated, whereas …


The Influence Of Neuromusculoskeletal Model Calibration Method On Predicted Knee Contact Forces During Walking, Gil Serrancolí, Allison Kinney, Benjamin J. Fregly, Josep M. Font-Llagunes Jun 2015

The Influence Of Neuromusculoskeletal Model Calibration Method On Predicted Knee Contact Forces During Walking, Gil Serrancolí, Allison Kinney, Benjamin J. Fregly, Josep M. Font-Llagunes

Mechanical and Aerospace Engineering Faculty Publications

This study explored the influence of three model calibration methods on predicted knee contact and leg muscle forces during walking. Static optimization was used to calculate muscle activations for all three methods. Approach A used muscle-tendon model parameter values (i.e., optimal muscle fiber lengths and tendon slack lengths) taken directly from literature. Approach B used a simple algorithm to calibrate muscle-tendon model parameter values such that each muscle operated within the ascending region of its normalized force-length curve. Approach C used a novel two-level optimization procedure to calibrate muscle-tendon, moment arm, and neural control model parameter values while simultaneously predicting …


Cerebrovascular Reactivity Alterations Due To Subconcussive Repetitive Head Trauma In Asymptomatic High School Football Players, Chetas Joshi Apr 2015

Cerebrovascular Reactivity Alterations Due To Subconcussive Repetitive Head Trauma In Asymptomatic High School Football Players, Chetas Joshi

Open Access Theses

Chronic neurological damage as a result of chronic repetitive head trauma is a major concern for football athletes today. Repetitive concussions have been linked to many neurological disorders. Recently, it has been reported that repetitive subconcussive events can contribute to long-term neurodegeneration. For these reasons, it is important to understand the effect repetitive subconcussive head trauma has on brain health in young athletes. Past research has demonstrated that cerebrovascular reactivity (CVR), an important mediator of cerebrovascular regulation, is impaired following mild traumatic brain injury (mTBI). This impairment increases susceptibility to secondary injury following mTBI. In this study, Breath-Hold (BH) task …


Individual Analysis Of T2*-Weighted Gradient Echo Imaging In Asymptomatic And Symptomatic Athletes, Xianglun Mao Apr 2015

Individual Analysis Of T2*-Weighted Gradient Echo Imaging In Asymptomatic And Symptomatic Athletes, Xianglun Mao

Open Access Theses

Mild traumatic brain injury (mTBI), is a commonly occurred sports-related injury, especially in contact sports like football and soccer. Hemorrhage will appear as hypointense lesions on T2 *-weighted images, resulting from mTBI. Thus, T 2*-weighted gradient echo pulse sequence can be used to generate magnitude susceptibility-weighted (SW) images, and to further detect negative intensity changes of different regions of interests (ROIs) inside human brains. Our goal was to investigate how the ROI-specific intensity changes in each individual sports athlete over a single competition season and to interrogate whether these changes are correlated with repetitive subconcussive or …


An Investigation Of The Relationship Between Axonal Injury, Biomarker Expression And Mechanical Response In A Rodent Head Impact Acceleration Model, Yan Li Jan 2015

An Investigation Of The Relationship Between Axonal Injury, Biomarker Expression And Mechanical Response In A Rodent Head Impact Acceleration Model, Yan Li

Wayne State University Dissertations

In the United States 1.4 million people sustain traumatic brain injury (TBI) each year, resulting in 235,000 hospitalizations and 50,000 fatalities annually. Traumatic axonal injury (TAI) is a serious outcome of TBI that accounts for 40-50% of hospitalizations due to head injury and one third of the mortality due to TBI, and it is difficult to diagnose and evaluate. The purpose of this dissertation is to determine mechanical injury predictors for TAI and identify potential biomarkers to evaluate TAI.

In this dissertation, a modified Marmarou impact acceleration injury model was developed to allow the monitoring of velocity of the impactor …


A Multi-Directional Treadmill Training Program For Improving Gait, Balance, And Mobility In Individuals With Parkinson’S Disease: A Case Series, Kimberly Smith, Kurt Jackson, Kimberly Edginton Bigelow, Lloyd L. Laubach Jan 2015

A Multi-Directional Treadmill Training Program For Improving Gait, Balance, And Mobility In Individuals With Parkinson’S Disease: A Case Series, Kimberly Smith, Kurt Jackson, Kimberly Edginton Bigelow, Lloyd L. Laubach

Mechanical and Aerospace Engineering Faculty Publications

Treadmill training is a commonly used intervention for improving gait in people with Parkinson’s disease (PD). However, little is known about how treadmill training may also influence balance and other aspects of mobility.

The purpose of this case series was to explore the feasibility and possible benefits of multi-directional treadmill training for individuals with PD. Four participants (62.3 ± 6.5 yrs, Hoehn & Yahr 2-4) performed 8 weeks of treadmill training 3 times per week. Weeks 1-4 included forward walking only, while weeks 5-8 included forward and multi-directional walking. Participants were tested every 4 weeks on 4 separate occasions. Outcome …