Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Kinesiology

Series

Institution
Keyword
Publication Year
Publication

Articles 1 - 27 of 27

Full-Text Articles in Biomedical Engineering and Bioengineering

Aerobic Exercise Improves Depressive Symptoms In The Unilateral 6-Ohda-Lesioned Rat Model Of Parkinson's Disease, Hannah Loughlin, Jacob Jackson, Chloe Looman, Alayna Starll, Jeremy Goldman, Zhiying Shan, Chunxiu Yu Jun 2024

Aerobic Exercise Improves Depressive Symptoms In The Unilateral 6-Ohda-Lesioned Rat Model Of Parkinson's Disease, Hannah Loughlin, Jacob Jackson, Chloe Looman, Alayna Starll, Jeremy Goldman, Zhiying Shan, Chunxiu Yu

Michigan Tech Publications, Part 2

Aerobic exercise has been shown to have established benefits on motor function in Parkinson's disease (PD). However, the impact of exercise on depressive symptoms in PD remains unclear. This study aimed to investigate the effects of regular exercise, specifically using a forced running wheel, on both motor performance and the prevalence of depression in a unilateral 6-OHDA-lesioned rat model of PD. The behavioral outcomes of exercise were assessed through the rotarod test (RT), forelimb adjusting step test (FAST), sucrose consumption test (SCT), and novelty sucrose splash test (NSST). Our data revealed evident depressive symptoms in the PD animals, characterized by …


A Dynamical Systems Approach To Characterizing Brain–Body Interactions During Movement: Challenges, Interpretations, And Recommendations, Derek C. Monroe, Nathaniel T. Berry, Peter C. Fino, Christopher K. Rhea Jul 2023

A Dynamical Systems Approach To Characterizing Brain–Body Interactions During Movement: Challenges, Interpretations, And Recommendations, Derek C. Monroe, Nathaniel T. Berry, Peter C. Fino, Christopher K. Rhea

Rehabilitation Sciences Faculty Publications

Brain–body interactions (BBIs) have been the focus of intense scrutiny since the inception of the scientific method, playing a foundational role in the earliest debates over the philosophy of science. Contemporary investigations of BBIs to elucidate the neural principles of motor control have benefited from advances in neuroimaging, device engineering, and signal processing. However, these studies generally suffer from two major limitations. First, they rely on interpretations of ‘brain’ activity that are behavioral in nature, rather than neuroanatomical or biophysical. Second, they employ methodological approaches that are inconsistent with a dynamical systems approach to neuromotor control. These limitations represent a …


Conductive 3d Nano-Biohybrid Systems Based On Densified Carbon Nanotube Forests And Living Cells, Roya Bagheri, Alicia K. Ball, Masoud Kasraie, Aparna Chandra, Xinqian Chen, Ibrahim Miskioglu, Zhiying Shan, Parisa Pour Shahid Saeed Abadi Jan 2023

Conductive 3d Nano-Biohybrid Systems Based On Densified Carbon Nanotube Forests And Living Cells, Roya Bagheri, Alicia K. Ball, Masoud Kasraie, Aparna Chandra, Xinqian Chen, Ibrahim Miskioglu, Zhiying Shan, Parisa Pour Shahid Saeed Abadi

Michigan Tech Publications, Part 2

Conductive biohybrid cell-material systems have applications in bioelectronics and biorobotics. To date, conductive scaffolds are limited to those with low electrical conductivity or 2D sheets. Here, 3D biohybrid conductive systems are developed using fibroblasts or cardiomyocytes integrated with carbon nanotube (CNT) forests that are densified due to interactions with a gelatin coating. CNT forest scaffolds with a height range of 120–240 µm and an average electrical conductivity of 0.6 S/cm are developed and shown to be cytocompatible as evidenced from greater than 89% viability measured by live-dead assay on both cells on day 1. The cells spread on top and …


A Systematic Review And Meta-Analysis On The Efficacy Of Stem Cell Therapy On Bone Brittleness In Mouse Models Of Osteogenesis Imperfecta, Lauren Battle, Shoshana Yakar, Alessandra Carriero Jul 2021

A Systematic Review And Meta-Analysis On The Efficacy Of Stem Cell Therapy On Bone Brittleness In Mouse Models Of Osteogenesis Imperfecta, Lauren Battle, Shoshana Yakar, Alessandra Carriero

Publications and Research

There is no cure for osteogenesis imperfecta (OI), and current treatments can only partially correct the bone phenotype. Stem cell therapy holds potential to improve bone quality and quantity in OI. Here, we conduct a systematic review and meta-analysis of published studies to investigate the efficacy of stem cell therapy to rescue bone brittleness in mouse models of OI. Identified studies included bone marrow, mesenchymal stem cells, and human fetal stem cells. Effect size of fracture incidence, maximum load, stiffness, cortical thickness, bone volume fraction, and raw engraftment rates were pooled in a random-effects meta-analysis. Cell type, cell number, injection …


Biomechanics Of Trail Running Performance: Quantification Of Spatio-Temporal Parameters By Using Low Cost Sensors In Ecological Conditions, Noé Perrotin, Nicolas Gardan, Arnaud Lesprillier, Clément Le Goff, Jean-Marc Seigneur, Ellie Abdi, Borja Sanudo, Redha Taiar Feb 2021

Biomechanics Of Trail Running Performance: Quantification Of Spatio-Temporal Parameters By Using Low Cost Sensors In Ecological Conditions, Noé Perrotin, Nicolas Gardan, Arnaud Lesprillier, Clément Le Goff, Jean-Marc Seigneur, Ellie Abdi, Borja Sanudo, Redha Taiar

Publications

The recent popularity of trail running and the use of portable sensors capable of measuring many performance results have led to the growth of new fields in sports science experimentation. Trail running is a challenging sport; it usually involves running uphill, which is physically demanding and therefore requires adaptation to the running style. The main objectives of this study were initially to use three “low-cost” sensors. These low-cost sensors can be acquired by most sports practitioners or trainers. In the second step, measurements were taken in ecological conditions orderly to expose the runners to a real trail course. Furthermore, to …


Age And Sex Differences In Load-Induced Tibial Cortical Bone Surface Strain Maps, Alessandra Carriero, Behzad Javaheri, Neda Bassir Kazeruni, Andrew A. Pitsillides, Sandra J. Shefelbine Jan 2021

Age And Sex Differences In Load-Induced Tibial Cortical Bone Surface Strain Maps, Alessandra Carriero, Behzad Javaheri, Neda Bassir Kazeruni, Andrew A. Pitsillides, Sandra J. Shefelbine

Publications and Research

Bone adapts its architecture to the applied load; however, it is still unclear how bone mechano-adaptation is coordinated and why potential for adaptation adjusts during the life course. Previous animal models have suggested strain as the mechanical stimulus for bone adaptation, but yet it is unknown how mouse cortical bone load-related strains vary with age and sex. In this study, full-field strain maps (at 1 N increments up to 12 N) on the bone surface were measured in young, adult, and old (aged 10, 22 weeks, and 20 months, respectively), male and female C57BL/6J mice with load applied using a …


Walking Biomechanics And Energetics Of Individuals With A Visual Impairment: A Preliminary Report, Hunter J. Bennett, Kevin A. Valenzuela, Kristina Fleenor, Steven Morrison, Justin A. Haegele Jan 2019

Walking Biomechanics And Energetics Of Individuals With A Visual Impairment: A Preliminary Report, Hunter J. Bennett, Kevin A. Valenzuela, Kristina Fleenor, Steven Morrison, Justin A. Haegele

Human Movement Sciences Faculty Publications

Purpose.

Although walking gait in sighted populations is well researched, few studies have investigated persons with visual impairments (VIs). Given the lack of physical activity in people with VIs, it is possible that reduced efficiency in walking could adversely affect activity. The purposes of this preliminary study were to (1) examine the biomechanics and energetics utilized during independent and guided walking in subjects with VIs, and (2) compare gait biomechanics between people with VIs and sighted controls.

Methods.

Three-dimensional motion capture and force platforms were used during independent and guided walking at self-selected speeds. Joint angles, moments, external work, and …


Comparison Of Lumbo-Pelvic Kinematics During Trunk Forward Bending And Backward Return Between Patients With Acute Low Back Pain And Asymptomatic Controls, Iman Shojaei, Elizabeth G. Salt, Quenten L. Hooker, Linda R. Van Dillen, Babak Bazrgari Jan 2017

Comparison Of Lumbo-Pelvic Kinematics During Trunk Forward Bending And Backward Return Between Patients With Acute Low Back Pain And Asymptomatic Controls, Iman Shojaei, Elizabeth G. Salt, Quenten L. Hooker, Linda R. Van Dillen, Babak Bazrgari

Biomedical Engineering Faculty Publications

Background—Prior studies have reported differences in lumbo-pelvic kinematics during a trunk forward bending and backward return task between individuals with and without chronic low back pain; yet, the literature on lumbo-pelvic kinematics of patients with acute low back pain is scant. Therefore, the purpose of this study was set to investigate lumbo-pelvic kinematics in this cohort.

Methods—A case-control study was conducted to investigate the differences in pelvic and thoracic rotation along with lumbar flexion as well as their first and second time derivatives between females with and without acute low back pain. Participants in each group completed one …


Toward Translating Near-Infrared Spectroscopy Oxygen Saturation Data For The Non-Invasive Prediction Of Spatial And Temporal Hemodynamics During Exercise, Laura M. Ellwein, Margaret M. Samyn, Michael E. Danduran, Sheila M. Schindler-Ivens, Stacy Liebham, John F. Ladisa Jr. Jul 2016

Toward Translating Near-Infrared Spectroscopy Oxygen Saturation Data For The Non-Invasive Prediction Of Spatial And Temporal Hemodynamics During Exercise, Laura M. Ellwein, Margaret M. Samyn, Michael E. Danduran, Sheila M. Schindler-Ivens, Stacy Liebham, John F. Ladisa Jr.

Exercise Science Faculty Research and Publications

Image-based computational fluid dynamics (CFD) studies conducted at rest have shown that atherosclerotic plaque in the thoracic aorta (TA) correlates with adverse wall shear stress (WSS), but there is a paucity of such data under elevated flow conditions. We developed a pedaling exercise protocol to obtain phase contrast magnetic resonance imaging (PC-MRI) blood flow measurements in the TA and brachiocephalic arteries during three-tiered supine pedaling at 130, 150, and 170 % of resting heart rate (HR), and relate these measurements to non-invasive tissue oxygen saturation (StO2) acquired by near-infrared spectroscopy (NIRS) while conducting the same protocol. Local quantification …


Biomechanical Investigation Of Elite Place-Kicking, Chase M. Pfeifer Nov 2015

Biomechanical Investigation Of Elite Place-Kicking, Chase M. Pfeifer

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Many studies aim to understand the fundamentals of kicking commonly displayed by soccer players [4,6,10,16,17,18,24,25,28,29,30,34,36,38,40]. Of those studies, most are limited to a two-dimensional (2D) analysis using high-speed cameras for position tracking or utilizing electromyography to observe the activity of select muscles [4,6,18,25,29,36]. The few studies that investigate kicking using a three-dimensional (3D) model are limited in their position tracking capabilities and focus mainly on joint flexion potentials and foot speed.

This dissertation is a comprehensive biomechanical analysis (kinematic and EMG) of the field-goal place-kicking techniques of four elite kickers in American football. Data were compared and contrasted with ball …


Development Of A Muscle Model Parameter Calibration Method Via Passive Muscle Force Minimization, Allison Kinney, Benjamin J. Fregly Jul 2015

Development Of A Muscle Model Parameter Calibration Method Via Passive Muscle Force Minimization, Allison Kinney, Benjamin J. Fregly

Mechanical and Aerospace Engineering Faculty Publications

Computational predictions of subject-specific muscle and knee joint contact forces during walking may improve individual rehabilitation treatment design. Such predictions depend directly on specified model parameter values. However, model parameters are difficult to measure non-invasively. Methods for muscle model parameter calibration have been developed previously. However, it is currently unknown how the musculoskeletal system chooses muscle model parameter values. Previous studies have hypothesized that muscles avoid injury during walking by generating little passive force and operating in the ascending region of the force-length curve. This hypothesis suggests that muscle model parameter values may be selected by the body to minimize …


Synergy-Based Two-Level Optimization For Predicting Knee Contact Forces During Walking, Gil Serrancolí, Allison Kinney, Josep M. Font-Llagunes, Benjamin J. Fregly Jul 2015

Synergy-Based Two-Level Optimization For Predicting Knee Contact Forces During Walking, Gil Serrancolí, Allison Kinney, Josep M. Font-Llagunes, Benjamin J. Fregly

Mechanical and Aerospace Engineering Faculty Publications

Musculoskeletal models and optimization methods are combined to calculate muscle forces. Some model parameters cannot be experimentally measured due to the invasiveness, such as the muscle moment arms or the muscle and tendon lengths. Moreover, other parameters used in the optimization, such as the muscle synergy components, can be also unknown. The estimation of all these parameters needs to be validated to obtain physiologically consistent results. In this study, a two-step optimization problem was formulated to predict both muscle and knee contact forces of a subject wearing an instrumented knee prosthesis. In the outer level, muscle parameters were calibrated, whereas …


The Influence Of Neuromusculoskeletal Model Calibration Method On Predicted Knee Contact Forces During Walking, Gil Serrancolí, Allison Kinney, Benjamin J. Fregly, Josep M. Font-Llagunes Jun 2015

The Influence Of Neuromusculoskeletal Model Calibration Method On Predicted Knee Contact Forces During Walking, Gil Serrancolí, Allison Kinney, Benjamin J. Fregly, Josep M. Font-Llagunes

Mechanical and Aerospace Engineering Faculty Publications

This study explored the influence of three model calibration methods on predicted knee contact and leg muscle forces during walking. Static optimization was used to calculate muscle activations for all three methods. Approach A used muscle-tendon model parameter values (i.e., optimal muscle fiber lengths and tendon slack lengths) taken directly from literature. Approach B used a simple algorithm to calibrate muscle-tendon model parameter values such that each muscle operated within the ascending region of its normalized force-length curve. Approach C used a novel two-level optimization procedure to calibrate muscle-tendon, moment arm, and neural control model parameter values while simultaneously predicting …


A Multi-Directional Treadmill Training Program For Improving Gait, Balance, And Mobility In Individuals With Parkinson’S Disease: A Case Series, Kimberly Smith, Kurt Jackson, Kimberly Edginton Bigelow, Lloyd L. Laubach Jan 2015

A Multi-Directional Treadmill Training Program For Improving Gait, Balance, And Mobility In Individuals With Parkinson’S Disease: A Case Series, Kimberly Smith, Kurt Jackson, Kimberly Edginton Bigelow, Lloyd L. Laubach

Mechanical and Aerospace Engineering Faculty Publications

Treadmill training is a commonly used intervention for improving gait in people with Parkinson’s disease (PD). However, little is known about how treadmill training may also influence balance and other aspects of mobility.

The purpose of this case series was to explore the feasibility and possible benefits of multi-directional treadmill training for individuals with PD. Four participants (62.3 ± 6.5 yrs, Hoehn & Yahr 2-4) performed 8 weeks of treadmill training 3 times per week. Weeks 1-4 included forward walking only, while weeks 5-8 included forward and multi-directional walking. Participants were tested every 4 weeks on 4 separate occasions. Outcome …


How Sensitive Is The Deltoid Moment Arm To Joint Center Changes With Rtsa?, David Walker, Allison Kinney, Aimee Struk, Benjamin J. Fregly, Thomas Wright, Scott Banks Sep 2014

How Sensitive Is The Deltoid Moment Arm To Joint Center Changes With Rtsa?, David Walker, Allison Kinney, Aimee Struk, Benjamin J. Fregly, Thomas Wright, Scott Banks

Mechanical and Aerospace Engineering Faculty Publications

The goal of this study was to assess the sensitivity of the deltoid muscle moment arms as a function of joint configuration for an existing RTSA subject. High variations were found for all three deltoid components. Variation over the entire abduction arc was greatest in the anterior and lateral deltoid, while the posterior deltoid moment arm was mostly sensitive to joint center changes early in the abduction arc. Moment arm changes of 10-16mm represent a significant amount of the total deltoid moment arm. This means there is an opportunity to dramatically change the deltoid moments arms through surgical placement of …


Deltoid Moment Arms During Abduction: A Subject-Specific Musculoskeletal Modeling Study In Healthy Shoulders And Shoulders With Rtsa, David Walker, Allison Kinney, Aimee Struk, Benjamin J. Fregly, Thomas Wright, Scott Banks Sep 2014

Deltoid Moment Arms During Abduction: A Subject-Specific Musculoskeletal Modeling Study In Healthy Shoulders And Shoulders With Rtsa, David Walker, Allison Kinney, Aimee Struk, Benjamin J. Fregly, Thomas Wright, Scott Banks

Mechanical and Aerospace Engineering Faculty Publications

Reverse total shoulder arthroplasty (RTSA) is increasingly used in the United States since approval by the FDA in 2003. RTSA relieves pain and restores mobility in arthritic rotator cuff deficient shoulders. Though many advantages of RTSA have been demonstrated, there still are a variety of complications (implant loosening, shoulder impingement, infection, frozen shoulder) making apparent much still is to be learned how RTSA modifies normal shoulder function. The goal of this study was to assess how RTSA affects deltoid muscle moment generating capacity post-surgery using a subjectspecific computational model driven by in vivo kinematic data.


A Novel Approach To Estimation Of Patient-Specific Muscle Strength, David Walker, Allison Kinney, Benjamin J. Fregly, Thomas Wright, Scott Banks Sep 2014

A Novel Approach To Estimation Of Patient-Specific Muscle Strength, David Walker, Allison Kinney, Benjamin J. Fregly, Thomas Wright, Scott Banks

Mechanical and Aerospace Engineering Faculty Publications

Current modeling techniques have been used to model the Reverse Total Shoulder Arthroplasty (RTSA) to account for the geometric changes implemented after RTSA. Though these models have provided insight into the effects of geometric changes from RTSA these is still a limitation of understanding muscle function after RTSA on a patient-specific basis. The goal of this study sought to overcome this limitation by developing an approach to calibrate patient-specific muscle strength for an RTSA subject.


Formulation To Predict Lower Limb Muscle Forces During Gait, Gil Serrancolí, Jonathan P. Walter, Allison Kinney, A. Barjau, Benjamin J. Fregly, Josep M. Font-Llagunes Oct 2013

Formulation To Predict Lower Limb Muscle Forces During Gait, Gil Serrancolí, Jonathan P. Walter, Allison Kinney, A. Barjau, Benjamin J. Fregly, Josep M. Font-Llagunes

Mechanical and Aerospace Engineering Faculty Publications

The human body has more muscles than Degrees of Freedom (DoF), and that leads to indeterminacy in the muscle force calculation. This study proposes the formulation of an optimization problem to estimate the lower-limb muscle forces during a gait cycle of a patient wearing an instrumented knee prosthesis. The originality of that formulation consists of simulating muscle excitations in a physiological way while muscle parameters are calibrated. Two approaches have been considered. In Approach A, measured contact forces are applied to the model and all inverse dynamics loads are matched in order to get a physiological calibration of muscle parameters. …


Optimization Problem Formulation For Predicting Knee Muscle And Contact Forces During Gait, Gil Serrancolí, Jonathan P. Walter, Allison Kinney, Benjamin J. Fregly, Josep M. Font-Llagunes Aug 2013

Optimization Problem Formulation For Predicting Knee Muscle And Contact Forces During Gait, Gil Serrancolí, Jonathan P. Walter, Allison Kinney, Benjamin J. Fregly, Josep M. Font-Llagunes

Mechanical and Aerospace Engineering Faculty Publications

The human body has more muscles than degrees of freedom (DOF), which leads to indeterminacy in the muscle force calculation. In this study, an optimization problem to estimate the lower-limb muscle forces during a gait cycle of a patient wearing an instrumented knee prosthesis is formulated. It consists of simulating muscle excitations in a physiological way while muscle parameters are calibrated.


Changes In In Vivo Knee Contact Forces Through Gait Modification, Allison Kinney, Thor F. Besier, Amy Slider, Scott L. Delp, Darryl D. D'Lima, Benjamin J. Fregly Aug 2012

Changes In In Vivo Knee Contact Forces Through Gait Modification, Allison Kinney, Thor F. Besier, Amy Slider, Scott L. Delp, Darryl D. D'Lima, Benjamin J. Fregly

Mechanical and Aerospace Engineering Faculty Publications

Gait modification represents a non-invasive method for reducing knee joint loading in patients with knee osteoarthritis. Previous studies have shown that a variety of gait modifications are effective in reducing the external knee adduction moment. The external knee adduction moment is often used as a surrogate measure of medial compartment force. However, a recent study showed that reductions in the external knee adduction moment do not guarantee reductions in medial compartment loads. Therefore, direct measurement of changes in knee contact force is important for determining the effectiveness of gait modifications. A previous study found that medial thrust gait and walking …


Effectiveness Of Group Kickboxing As A Means To Improve Gait And Balance In Individuals With Ms, Kurt Jackson, Kimberly Edginton Bigelow, Christina Cooper, Harold L. Merriman Oct 2011

Effectiveness Of Group Kickboxing As A Means To Improve Gait And Balance In Individuals With Ms, Kurt Jackson, Kimberly Edginton Bigelow, Christina Cooper, Harold L. Merriman

Mechanical and Aerospace Engineering Faculty Publications

In recent years, there has been a particular emphasis on identifying and delivering appropriate therapeutic interventions that address the significant balance and gait impairments that affect individuals with multiple sclerosis (MS). Group interventions implemented in community settings have been especially of interest, including tai chi classes. Recently, the authors conducted a preliminary study to examine whether group kick-boxing, which requires more vigorous movements, might be a feasible intervention. Initial findings showed promise and led the authors to pursue a more rigorous follow-up study, with the objective of determining whether a 5-week group kickboxing class improved clinical measures of balance and …


Muscle Contributions To Frontal And Transverse Plane Whole-Body Angular Momentum, Richard R. Neptune, Craig P. Mcgowan, Allison Kinney Jul 2011

Muscle Contributions To Frontal And Transverse Plane Whole-Body Angular Momentum, Richard R. Neptune, Craig P. Mcgowan, Allison Kinney

Mechanical and Aerospace Engineering Faculty Publications

The purpose of this study was to build upon previous work by analyzing how gravity and individual muscles contribute to frontal and traverse plane whole-body angular momentum. Identifying which muscles are responsible for generating angular momentum has important implications for the diagnosis and treatment of movement disorders.


Pre-Swing Deficits In Forward Propulsion, Swing Initiation And Power Generation By Individual Muscles In Hemiparetic Walking, Carrie L. Peterson, Allison Kinney, Steven A. Kautz, Richard R. Neptune Aug 2010

Pre-Swing Deficits In Forward Propulsion, Swing Initiation And Power Generation By Individual Muscles In Hemiparetic Walking, Carrie L. Peterson, Allison Kinney, Steven A. Kautz, Richard R. Neptune

Mechanical and Aerospace Engineering Faculty Publications

Clinical studies of hemiparetic walking have shown pre-swing abnormalities in the paretic leg suggesting that paretic muscle contributions to important biomechanical walking subtasks are different than those of non-disabled individuals. Three-dimensional forward dynamics simulations of two representative hemiparetic subjects with different levels of walking function classified by self-selected walking speed (i.e., limited community=0.4–0.8 m/s and community walkers=>0.8 m/s) and a speed-matched control were generated to quantify individual muscle contributions to forward propulsion, swing initiation and power generation during the pre-swing phase (i.e., double support phase proceeding toe-off). Simulation analyses identified decreased paretic soleus and gastrocnemius contributions to forward propulsion …


Relationships Between Muscle Contributions To Walking Subtasks And Functional Walking Status In Persons With Post-Stroke Hemiparesis, Allison Kinney, Carrie L. Peterson, Steven A. Kautz, Richard R. Neptune Aug 2010

Relationships Between Muscle Contributions To Walking Subtasks And Functional Walking Status In Persons With Post-Stroke Hemiparesis, Allison Kinney, Carrie L. Peterson, Steven A. Kautz, Richard R. Neptune

Mechanical and Aerospace Engineering Faculty Publications

Walking speed is commonly used to predict stroke severity and assess functional walking status (i.e., household, limited community and community walking status) post-stroke. The underlying mechanisms that limit walking speed (and functional walking status by extension) need to be understood to improve post-stroke rehabilitation. Previous experimental studies have shown correlations between paretic plantarflexor output during the pre-swing phase and walking speed and suggest that the paretic hip flexors can compensate in some hemiparetic subjects. Modeling and simulation studies of healthy walking have shown that the ankle plantarflexors, soleus (SOL) and gastrocnemius (GAS), and uniarticular hip flexors (IL) are essential contributors …


Development And Analysis Of A Software Package To Quantify In Vivo Polyethylene Wear After Total Hip Arthroplasty, Allison Kinney, Catherine G. Ambrose Jul 2007

Development And Analysis Of A Software Package To Quantify In Vivo Polyethylene Wear After Total Hip Arthroplasty, Allison Kinney, Catherine G. Ambrose

Mechanical and Aerospace Engineering Faculty Publications

Since the first total hip arthroplasty (THA) in 1938, THA evolved and developed into one of the major concentrations of orthopaedic research. The typical hip implant device used today incorporates a femoral and an acetabular component that serve to replicate the anatomical and mechanical functions of the natural hip joint. However, several problems exist that can effect the function of the implant device. Wear in the polyethylene liner of the acetabular component of the total hip replacement device is known as one of the major factors that affects the longevity of total hip replacement devices. Both manual and computer-aided techniques …


Fabrication Of Ankle-Foot Orthoses Using Selective Laser Sintering Technology, Allison Kinney, M. C. Faustini, Richard R. Neptune, R. H. Crawford, S. J. Stanhope Jul 2007

Fabrication Of Ankle-Foot Orthoses Using Selective Laser Sintering Technology, Allison Kinney, M. C. Faustini, Richard R. Neptune, R. H. Crawford, S. J. Stanhope

Mechanical and Aerospace Engineering Faculty Publications

Passive dynamic ankle-foot orthoses (AFOs) are often prescribed to improve gait performance for those with various neuromuscular disorders. Designs and materials used for AFOs range from simple polypropylene braces to advanced custom carbon fiber dynamic AFOs that passively store and release mechanical energy during gait. AFO designs vary in the shape and length of the foot component as well as the stiffness and length of the tibial component, depending on the desired functional outcomes. However, the current fabrication technology is not ideally suited for refined customization of AFO characteristics to optimize performance, or for rapid lowcost, high volume manufacturing and …


Microscale Investigation Of Thermo-Fluid Transport In The Transition Fil, Region Of An Evaporating Capillary Meniscus Using A Microgravity Environment, Kenneth D. Kihm, Jeffrey S. Allen, Kevin P. Hallinan, David M. Pratt Jan 2004

Microscale Investigation Of Thermo-Fluid Transport In The Transition Fil, Region Of An Evaporating Capillary Meniscus Using A Microgravity Environment, Kenneth D. Kihm, Jeffrey S. Allen, Kevin P. Hallinan, David M. Pratt

Mechanical and Aerospace Engineering Faculty Publications

In order to enhance the fundamental understanding of thin film evaporation and thereby improve the critical design concept for two-phase heat transfer devices, microscale heat and mass transport is to be investigated for the transition film region using state-of-the-art optical diagnostic techniques. By utilizing a microgravity environment, the length scales of the transition film region can be extended sufficiently, from submicron to micron, to probe and measure the microscale transport fields which are affected by intermolecular forces. Extension of the thin film dimensions under microgravity will be achieved by using a conical evaporator made of a thin silicon substrate under …