Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biomedical Engineering and Bioengineering

Bacteria Movement Near Surfaces, Shulin Wang, Adib Ahmadzadegan, Arezoo Ardekani Aug 2018

Bacteria Movement Near Surfaces, Shulin Wang, Adib Ahmadzadegan, Arezoo Ardekani

The Summer Undergraduate Research Fellowship (SURF) Symposium

Understanding the behaviors of bacteria near surfaces is crucial in many biological and ecological applications. This knowledge can be used to hinder undesired biofilm formation on medical instruments and wounds. On top of that, it could also provide further insights in biodegradation of dispersed oil. In this work, the behavior of Escherichia Coli near a surface was experimentally studied. We utilized an inverted microscope in the phase filed illumination mode and processed acquired images to track the motions of bacteria near surfaces with high accuracy and repeatability. Distribution of the cells when they reached a steady state shows that the …


Bacterial Motility And Its Role In Biofilm Formation, Clayton J. Culp, Arezoo M. Ardekani, Adib Ahmadzadegan Aug 2017

Bacterial Motility And Its Role In Biofilm Formation, Clayton J. Culp, Arezoo M. Ardekani, Adib Ahmadzadegan

The Summer Undergraduate Research Fellowship (SURF) Symposium

Bacterial biofilms are known to cause millions of dollars in damage in the medical industry per year via infection of central venous catheters, urinary catheters, and mechanical heart valves. Unfortunately, there are some characteristics of biofilm formation that are yet to be fully understood. Recently much work has been done to investigate the motility characteristics of bacteria with hopes of better understanding the phenomena of biofilm formation. Still, one of the least understood stages is bacterial attachment or adhesion, a process designed to anchor bacteria in an advantageous environment. Providing a better understanding of bacterial motility near solid interfaces will …


Intrinsic Regulators Of Actomyosin Contractility Engendering Pulsatile Behaviors, Qilin Yu, Jing Li, Taeyoon Kim Aug 2017

Intrinsic Regulators Of Actomyosin Contractility Engendering Pulsatile Behaviors, Qilin Yu, Jing Li, Taeyoon Kim

The Summer Undergraduate Research Fellowship (SURF) Symposium

Actomyosin contractility regulates various biological processes including cell migration, muscle contraction, and tissue morphogenesis. Cell cortex underlying a membrane, which is a representative actomyosin network in eukaryote cells, exhibits dynamic contractile behaviors. Interestingly, the cell cortex shows reversible aggregation of actin and myosin called pulsatile contraction in diverse cellular phenomena, such as embryogenesis and tissue morphogenesis. While contractile behaviors have been studied in several in vitro experiments and computational studies, none of them demonstrated the pulsatile contraction of actomyosin networks observed in vivo. Here, we used an agent-based computational model based on Brownian dynamics to identify factors facilitating the pulsatile …


A Parametric Study Of The Mechanics Of Different Skin Flap Techniques, Steven J. Meza, Adrián Tepole Buganza Aug 2017

A Parametric Study Of The Mechanics Of Different Skin Flap Techniques, Steven J. Meza, Adrián Tepole Buganza

The Summer Undergraduate Research Fellowship (SURF) Symposium

In modern day plastic and reconstructive surgeries numerous skin flap designs have been developed and are used to close open wounds. Skin flaps are developed with the intention of imposing minimal tension in skin closure. Excessive tension can lead to poor blood flow that result in post-surgery complications such as necrosis. Currently there is no standard in choosing a skin flap design and a surgeon's choice is based personal experience. A comparison of the mechanical loading in these various designs has not yet been done. We have developed a parametric study, using finite element analysis, of two advancement skin flaps …


Mechanical Reliability Of Implantable Polyimide-Based Magnetic Microactuators For Biofouling Removal, Christian G. Figueroa-Espada, Qi Yang, Hyowon Lee Aug 2016

Mechanical Reliability Of Implantable Polyimide-Based Magnetic Microactuators For Biofouling Removal, Christian G. Figueroa-Espada, Qi Yang, Hyowon Lee

The Summer Undergraduate Research Fellowship (SURF) Symposium

Hydrocephalus is a neurological disorder that typically requires a long-term implantation of a shunt system to manage its symptoms. These shunt systems are notorious for their extremely high failure rate. More than 40% of all implanted shunt systems fail within the first year of implantation. On average, 85% of all hydrocephalus patients with shunt systems undergo at least two shunt-revision surgeries within 10 years of implantation. A large portion of this high failure rate can be attributed to biofouling-related obstructions and infections. Previously, we developed flexible polyimide-based magnetic microactuators to remove obstructions formed on hydrocephalus shunts. To test the long-term …


Indentation Probing Of In Vitro Bovine Articular Cartilage: Effects On Chondrocyte Viability And Tissue Biomechanics, Pablo F. Argote, Alan Poon, Xin Xu Ph.D, Corey P. Neu Ph.D. Aug 2015

Indentation Probing Of In Vitro Bovine Articular Cartilage: Effects On Chondrocyte Viability And Tissue Biomechanics, Pablo F. Argote, Alan Poon, Xin Xu Ph.D, Corey P. Neu Ph.D.

The Summer Undergraduate Research Fellowship (SURF) Symposium

Osteoarthritis (OA) consists of a degenerative disease on articular cartilage, which is prone to excessive mechanical loading and frictional resistance that leads to the wear and tear of the tissue. These factors result in the progressive and incurable disease that affects millions of people worldwide. The goal is to characterize chondrocyte viability and the in vitro biomechanical properties of articular cartilage in two confined indentation studies. One study looks at the chondrocyte viability over seven days. The second compares the immediate effects of strain rates on chondrocyte viability and tissue biomechanics. Bovine cartilage explants are harvested, cultured, and then 40% …