Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 39 of 39

Full-Text Articles in Engineering

A Model Predictive Control Approach To Roll Stability Of A Scaled Crash Avoidance Vehicle, Nikola John Linn Noxon Jun 2012

A Model Predictive Control Approach To Roll Stability Of A Scaled Crash Avoidance Vehicle, Nikola John Linn Noxon

Master's Theses

In this paper, a roll stability controller (RSC) is presented based on an eight degree of freedom dynamic vehicle model. The controller is designed for and tested on a scaled vehicle performing obstacle avoidance maneuvers on a populated test track. A rapidly-exploring random tree (RRT) algorithm is used for the vehicle to execute a trajectory around an obstacle, and examines the geographic, non-homonymic, and dynamic constraints to maneuver around the obstacle. A model predictive controller (MPC) uses information about the vehicle state and, based on a weighted performance measure, generates an optimal trajectory around the obstacle. The RSC uses the …


Vibration-Based Health Monitoring Of Multiple-Stage Gear Train And Differential Planetary Transmission Involving Teeth Damage And Backlash Nonlinearity, Andrew Patrick Sommer Sep 2011

Vibration-Based Health Monitoring Of Multiple-Stage Gear Train And Differential Planetary Transmission Involving Teeth Damage And Backlash Nonlinearity, Andrew Patrick Sommer

Master's Theses

The objective of this thesis is to develop vibration-based fault detection strategies for on-line condition monitoring of gear transmission systems. The study divides the thesis into three sections. First of all, the local stresses created by a root fatigue crack on a pinion spur gear are analyzed using a quasi-static finite element model and non-linear contact mechanics simulation. Backlash between gear teeth which is essential to provide better lubrication on tooth surfaces and to eliminate interference is included as a defect and a necessary part of transmission design. The second section is dedicated to fixed axis power trains. Torsional vibration …


Development Of A Cubesat Instrument For Microgravity Particle Damper Performance Analysis, John Trevor Abel Jun 2011

Development Of A Cubesat Instrument For Microgravity Particle Damper Performance Analysis, John Trevor Abel

Master's Theses

Spacecraft pointing accuracy and structural longevity requirements often necessitate auxiliary vibration dissipation mechanisms. However, temperature sensitivity and material degradation limit the effectiveness of traditional damping techniques in space. Robust particle damping technology offers a potential solution, driving the need for microgravity characterization. A 1U cubesat satellite presents a low cost, low risk platform for the acquisition of data needed for this evaluation, but severely restricts available mass, volume, power and bandwidth resources. This paper details the development of an instrument subject to these constraints that is capable of capturing high resolution frequency response measurements of highly nonlinear particle damper dynamics.


Structure Climbing Monkey Robot, Paul Bessent Jun 2011

Structure Climbing Monkey Robot, Paul Bessent

Master's Theses

This report describes the design, building, and testing of the Structure Climbing Monkey Robot (SCMR). It is composed of seven successive joints and linkages with two grippers at the two ends. Each gripper can act as the base or the end of the robot. The SCMR has the ability to climb any structure. The gripper plates can be changed to grab different kinds of structures, but this one is made to grab 2x4‘s. A program was written to assist the user to grab four non-coplanar, non-orthogonal points.

The SCMR is actuated by a total of nine motors: two to open …


Geomagnetic Compensation For Low-Cost Crash Avoidance Project, John C. Torres Apr 2011

Geomagnetic Compensation For Low-Cost Crash Avoidance Project, John C. Torres

Master's Theses

The goal of this work was to compensate for the effects of the Earth’s magnetic field in a vector field magnetic sensor. The magnetic sensor is a part of a low-cost crash avoidance system by Stephane Roussel where the magnetic sensor was used to detect cars passing when it was mounted to a test vehicle. However, the magnetic sensor’s output voltage varied when it changed orientation with respect to the Earth’s magnetic field. This limited the previous work to only analyze detection rates when the test vehicle travelled a single heading. Since one of the goals of this system is …


High-Resolution, Non-Contact Angular Measurement System For Psa/Rsa, Ronald D. Sloat Mar 2011

High-Resolution, Non-Contact Angular Measurement System For Psa/Rsa, Ronald D. Sloat

Master's Theses

A non-contact angular measurement system for Pitch Static Attitude (PSA) and Roll Static Attitude (RSA) of hard disk drive sliders is designed and built. Real-time sampling at over 15 KHz is achieved with accuracy of +/- 0.05 degrees over a range of approximately 2-3 degrees. Measuring the PSA and RSA is critical for hard drive manufacturers to control and improve the quality and reliability of hard drives. Although the hard drive industry is able to measure the PSA and RSA at the subassembly level at this time, there is no system available that is able to measure PSA/RSA at the …


Artificial Skin Tactile Sensor For Prosthetic And Robotic Applications, Ross James Miller Dec 2010

Artificial Skin Tactile Sensor For Prosthetic And Robotic Applications, Ross James Miller

Master's Theses

To solve the problem of limited tactile sensing in humanoid robotics as well as provide for future planned mechanical prostheses, an innovative tactile sensor system was created and embedded into two realistic-looking artificial skin gloves. These artificial skin tactile sensors used small piezoelectric ceramic disks to measure applied force at multiple points on each glove. The gloves were created using silicone rubber to simulate both the texture and look of human skin, while maintaining both flexibility and durability. The sensor outputs were buffered by high-impedance voltage-following operational amplifiers, and then read sequentially using a multiplexing scheme by a microcontroller. Sensor …


Implementation Of A Conrad Probe On A Boundary Layer Measurement System, Charles Rocky Ulk Aug 2010

Implementation Of A Conrad Probe On A Boundary Layer Measurement System, Charles Rocky Ulk

Master's Theses

This thesis presents the design, calibration, and performance evaluation of a type of two-hole pressure probe anemometer known as a Conrad probe, as well as its subsequent implementation on an autonomous, compact boundary layer measurement device and its first application for subsonic in-flight measurements of a swept wing boundary layer. Calibration of the Conrad probe was accomplished using two calibration functions and a non-nulling method for resolving in-plane flow velocity direction and magnitude over a range of ±30 degrees. This approach to calibration and application offered the advantages of rapid data acquisition with lower energy consumption than alternative methods for …


Development Of A Low Cost Handheld Microfluidic Phosphate Colorimeter For Water Quality Analysis, Sean C. Kaylor Aug 2009

Development Of A Low Cost Handheld Microfluidic Phosphate Colorimeter For Water Quality Analysis, Sean C. Kaylor

Master's Theses

This thesis describes the design, fabrication, and testing process for a microfluidic phosphate colorimeter utilized for water quality analysis. The device can be powered by, and interfaced for data collection with, a common cell phone or laptop to dramatically reduce costs. Unlike commercially available colorimeters, this device does not require the user to measure or mix sample and reagent. A disposable poly(dimethylsiloxane) (PDMS) microfluid chip, powered by an absorption pumping mechanism, was used to draw water samples, mix the sample at a specific ratio with a molybdovanadate reagent, and load both fluids into an onboard cuvette for colorimetric analysis. A …