Open Access. Powered by Scholars. Published by Universities.®

Mechanics of Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

1,664 Full-Text Articles 3,592 Authors 402,302 Downloads 75 Institutions

All Articles in Mechanics of Materials

Faceted Search

1,664 full-text articles. Page 6 of 74.

Innovations In Aligned And Overmolded Long Fiber Thermoplastic Composites, Shailesh P. Alwekar 2021 University of Tennessee, Knoxville

Innovations In Aligned And Overmolded Long Fiber Thermoplastic Composites, Shailesh P. Alwekar

Doctoral Dissertations

Long fiber thermoplastic (LFT) composite materials are increasingly used in high performance lightweight automotive, sporting, and industrial applications. LFT composites are processed with extrusion-compression molding (ECM) and/or injection molding (IM). Melt extrusion offers unique opportunities to align long fibers in a thermoplastic polymer melt. The properties of LFT materials are highly influenced by processing techniques which leads to different porosity content, fiber length distribution, and fiber orientation distribution. Hence, it is important to understand the various LFT processing techniques and their effect on mechanical, thermal, and microscopic properties.

The fundamental process-property relationships in LFT composites are investigated in this dissertation. …


Structural Stability Of Thermosets During Material Extrusion Additive Manufacturing, Stian K. Romberg 2021 University of Tennessee, Knoxville

Structural Stability Of Thermosets During Material Extrusion Additive Manufacturing, Stian K. Romberg

Doctoral Dissertations

Over the past decade, the scale of polymer additive manufacturing has been revolutionized with machines that print massive thermoplastic parts with greater geometric complexity than can be achieved by traditional manufacturing methods. However, the heat required to print thermoplastics consumes energy and induces thermal gradients that can reduce manufacturing flexibility and final mechanical properties. With the ability to be extruded at room temperature and excellent compatibility with fibers and fillers, thermoset resins show promise to decrease the energy consumption, expand the manufacturing flexibility, and broaden the material palette offered by large-scale polymer additive manufacturing. However, structural instability in the uncured …


Synthesis And Characterization Of Tin (Sn) Incorporated Ga2o3, Guillermo Nicolas Gutierrez 2021 University of Texas at El Paso

Synthesis And Characterization Of Tin (Sn) Incorporated Ga2o3, Guillermo Nicolas Gutierrez

Open Access Theses & Dissertations

In this work, we report on the synthesis, characterization of tin (Sn) incorporated gallium oxide Ga2O3 compounds, also included in this work is the effect of tin concentration related to the optical and electrochemical properties. The Sn incorporation into Ga2O3 creates a significant reduction in the bandgap and causes a nonlinear optical activity as the concentration varies. Substantial investigation performed to the structure, phase, and morphology of the mixed compounds governed by the stoichiometry equation Ga2−2xSnxO3-ɗ indicates that the Sn incorporation from 0.00 ≤ x ≤ 0.30 has a significant effect on these properties. To synthesize the Ga-Sn-O compounds a …


Microstructure And Hardness Comparison Of Inconel 625 Alloy Of Various Additive Manufacturing Processes Following Heat Treatments, Ariel Gamon 2021 University of Texas at El Paso

Microstructure And Hardness Comparison Of Inconel 625 Alloy Of Various Additive Manufacturing Processes Following Heat Treatments, Ariel Gamon

Open Access Theses & Dissertations

This research study presents experimental examples of as-built microstructures and associated microindentation hardnesses (HV) for a variety of metal additive manufacturing (AM) methods for Inconel 625 alloy. Cold spray (CS), laser powder bed fusion (L-PBF), wire arc additive manufacturing (WAAM), electron beam directed energy deposition (EB-DED), laser hot wire (LHW), binder jetting (BJT), and laser power directed energy deposition (LP-DED), laser wire directed energy deposition (LW-DED) and electron beam melting (EBM) were among the techniques employed. Microstructures varied from impact-bonded, flattened grains containing microdendrites and dislocations with a microindentation hardness of HV 590 for cold spray to large, equiaxed grains …


Mechanical Properties And Microstructure Evolution Of Thermally Treated Laser Powder Bed Fusion Alsi10mg, Jorge Merino-Gomez 2021 University of Texas at El Paso

Mechanical Properties And Microstructure Evolution Of Thermally Treated Laser Powder Bed Fusion Alsi10mg, Jorge Merino-Gomez

Open Access Theses & Dissertations

The optimization of mechanical properties with thermal postprocessing treatments was investigated in this study across a wide variety of variants. The relationship between heat treatments and the impacts on the mechanical properties and microstructure of printed materials is a crucial part of additive manufacturing. As a result, the current paper provides a comprehensive overview of postprocess heat treatments for Laser Powder Bed Fusion fabricated AlSi10Mg alloy, including stress relief anneals at 190 and 285 degrees Celsius for 2 hours, hot isostatic pressing at 515 degrees Celsius for 3 hours, hot isostatic pressing + T6 treatment for 6 hours, and final …


Rational Design Of Multifunctional Nanocatalysts For Environmental Remediation And Energy Conversion Technologies, Md Ariful Ahsan 2021 University of Texas at El Paso

Rational Design Of Multifunctional Nanocatalysts For Environmental Remediation And Energy Conversion Technologies, Md Ariful Ahsan

Open Access Theses & Dissertations

The discovery of efficient and sustainable carbon-based nanotechnologies to solve both the scarcity of drinking water and global energy crisis has become a paramount task in the last decades. Owed to the fast population growth and industrialization of the modern society, access to potable water and clean energy technologies is becoming very hard around the globe. Water pollutants have become a serious threat to the environment and ecology because of their toxic nature. Parallelly, the current hydrocarbon-based fuel industries are generating high levels of contamination across the planet, making imperative the development of cleaner energy technologies. In this regard, the …


Understanding The Chemical Structures Of Polydopamine, Deborah Takyibea Okyere 2021 University of Arkansas, Fayetteville

Understanding The Chemical Structures Of Polydopamine, Deborah Takyibea Okyere

Graduate Theses and Dissertations

Polydopamine (PDA) is described as a bioinspired polymer produced by a method involving the chemical oxidation of dopamine in a pH-dependent medium. It has been used for the functionalization of nanomaterials in diverse applications including drug delivery and biosensing because of its strong adhesiveness, functionality is easily modified, and biocompatibility with mammalian cells and tissues. The polymerization process is believed to be initiated by the autoxidation of dopamine to dopaminequinone. However, the repeating units, as well as the final structure of PDA, are not well understood. Hence, this work focuses on the characterizations of the PDA structures during formation and …


Assessing Mechanical Performance Of Dissimilar Steel Systems Made Via Wire-Arc Additive Manufacturing, Obed Daniel Acevedo 2021 University of Tennessee, Knoxville

Assessing Mechanical Performance Of Dissimilar Steel Systems Made Via Wire-Arc Additive Manufacturing, Obed Daniel Acevedo

Masters Theses

Hot stamping is part of a specific type of metalworking procedure widely used in the automotive industry. This research seeks to help make hot stamp tooling component production more cost-effective by using large-scale additive manufacturing. Additive manufacturing can produce dissimilar steel components that can be more cost-effective and time-efficient and allow for complex geometries to be made. A dissimilar steel system consisting of 410 martensitic stainless steel and AWS ER70S-6 mild steel is proposed to make hot stamps, making them more cost-efficient. However, the material interface's mechanical behavior in 410SS-mild steel additively manufactured material systems is not well understood. This …


Thermodynamic Modeling Of Aqueous Fe-Cu-As-Sb-Bi-H2so4 Solutions And Its Application For Redox Potential Determination In Copper Electrorefining From 25°C To 70°C, Yongteng Dong 2021 University of Texas at El Paso

Thermodynamic Modeling Of Aqueous Fe-Cu-As-Sb-Bi-H2so4 Solutions And Its Application For Redox Potential Determination In Copper Electrorefining From 25°C To 70°C, Yongteng Dong

Open Access Theses & Dissertations

Impurity elements in copper electrorefining (ER) electrolyte have been becoming a crucial issue on purity of copper cathode. The objective of this doctoral research is to develop a speciation model to understand impurity behavior in aqueous ER solutions.

A thermodynamic model of Fe(II)-Fe(III)-Cu(II)-H2SO4-H2O system is developed and shown to reliably simulate the species distribution in industrial copper electrorefining electrolyte from 25°C to 70°C. The previously developed model of Fe(II)-Fe(III)-H2SO4-H2O system under leaching conditions was first evaluated. It has proved that its applicability can be extended to much higher acid concentration (185 g/L) and high amount of copper (40-50 g/L). Cu(II) …


Phase Transformation And Strain Hardening Mechanisms In Advanced Engineering Steels, Hangyu Dong 2021 University of Texas at El Paso

Phase Transformation And Strain Hardening Mechanisms In Advanced Engineering Steels, Hangyu Dong

Open Access Theses & Dissertations

Strain hardening and associated deformation mechanisms play a determining role in the performance of metallic materials. The objective of the doctoral research was to explore and fundamentally understand the strain hardening mechanisms in the next generation of advanced engineering steels. Two main work hardening mechanisms, notably, twinning-induced plasticity (TWIP) and transformation-induced plasticity (TRIP)) were identified that governed strength and ductility. In the nanograined austenitic steel with high strength-high ductility combination, processed by the novel phase reversion concept, twinning-induced plasticity (TWIP) was the governing deformation mechanism and contributed to good ductility. In striking contrast, transformation-induced plasticity (TRIP) was the deformation mechanism …


Synthesis, Characterization, And Direct-Ink-Writing Of Syntactic Foams, Andrea Irigoyen 2021 University of Texas at El Paso

Synthesis, Characterization, And Direct-Ink-Writing Of Syntactic Foams, Andrea Irigoyen

Open Access Theses & Dissertations

This project encompasses three different methods to fabricate syntactic foams using a PDMS matrix i.e., hollow spheres inclusion, pore generator leaching by solvent, and emulsion. The foam formation by using polysiloxane hollow spheres is done in a 3-step process. The first step is to create a core of polystyrene following a dispersion polymerization process. The goal for the size of the pore is to monodisperse and have an average diameter of 5-10 μm, so the polystyrene core must be as well within that range. After that, the cores are coated with a polysiloxane shell by following a polymerization by condensation …


Autonomous Control And Signal Acquisition System, Rion Krampe 2021 Murray State University

Autonomous Control And Signal Acquisition System, Rion Krampe

Scholars Week

Dr. Bunget has an autonomous control and signal acquisition system that he wants to be repaired and improved upon. This requires that we identify the current issues with the system and repair them as well as make innovations to the system to meet customer needs. The position control needs to be autonomous, and the acquisition of the oscilloscope signal and the transducer position needs to be synchronous. The user should be able to control the position, speed, and how often the signals are captured. The waveform of the scan should be appended into a spreadsheet. The system code also needs …


Quick - Release End Effector Tool Interface, Shane Farritor, Thomas Frederick 2021 Lincoln , NE

Quick - Release End Effector Tool Interface, Shane Farritor, Thomas Frederick

Mechanical & Materials Engineering Faculty Publications

The various embodiments herein relate to a coupling apparatus for a medical device having a coupler body, a cavity defined in the coupler body, a rotatable drive component disposed within the cavity and having at least two pin receiving openings, and an actuable locking ring disposed around the cavity.


In Situ Characterization Of Tensile Behavior Of Laser Rapid Solidified Al–Si Heterogeneous Microstructures, Bingqiang Wei, Wenqian Wu, Dongyue Xie, Huai-Hsun Lien, Metin Kayitmazbatir, Amit Misra, Jian Wang 2021 University of Nebraska - Lincoln

In Situ Characterization Of Tensile Behavior Of Laser Rapid Solidified Al–Si Heterogeneous Microstructures, Bingqiang Wei, Wenqian Wu, Dongyue Xie, Huai-Hsun Lien, Metin Kayitmazbatir, Amit Misra, Jian Wang

Mechanical & Materials Engineering Faculty Publications

Heterogeneous Al–Si microstructure comprising of sub-micron-scale Al dendrites and nanoscale Al–Si fibrous eutectic was fabricated by processing as-cast Al-20wt.%Si alloy using laser rapid solidification. In situ tension tests explored high tensile strength ( ∼ 600 MPa) and ductility ( ∼ 10%) and high strain hardening rate ( ∼ 7 GPa). Microstructural characterization revealed the plastic co[1]deformation mechanisms between soft Al dendrites and hard nanoscale Al–Si eutectic. The progression of plasticity in nanoscale Al–Si eutectic with increasing applied strain is accommodated by dislocation plasticity in the nano-Al channels and cracking Si nanofibers. The propagation of nano-cracks is suppressed by surrounding Al, …


Digitally Twinned Additive Manufacturing: Detecting Flaws In Laser Powder Bed Fusion By Combining Thermal Simulations With In-Situmeltpool Sensor Data, R Yavari, A Riensche, E Tekerek, L Jacquemetton, H Halliday, M Vandever, A Tenequer, V Perumal, A Kontsos, Z Smoqi, K Cole, P Rao 2021 University of Nebraska - Lincoln

Digitally Twinned Additive Manufacturing: Detecting Flaws In Laser Powder Bed Fusion By Combining Thermal Simulations With In-Situmeltpool Sensor Data, R Yavari, A Riensche, E Tekerek, L Jacquemetton, H Halliday, M Vandever, A Tenequer, V Perumal, A Kontsos, Z Smoqi, K Cole, P Rao

Mechanical & Materials Engineering Faculty Publications

The goal of this research is the in-situ detection of flaw formation in metal parts made using the laser powder bed fusion (LPBF) additive manufacturing process. This is an important area of research, because, despite the considerable cost and time savings achieved, precision-driven industries, such as aerospace and biomedical, are reticent in using LPBF to make safety–critical parts due to tendency of the process to create flaws. Another emerging concern in LPBF, and additive manufacturing in general, is related to cyber security – malicious actors may tamper with the process or plant flaws inside a part to compromise its performance. …


Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang 2021 The Graduate Center, City University of New York

Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang

Dissertations, Theses, and Capstone Projects

Nature usually divides complex systems into smaller building blocks specializing in a few tasks since one entity cannot achieve everything. Therefore, self-assembly is a robust tool exploited by Nature to build hierarchical systems that accomplish unique functions. The cell membrane distinguishes itself as an example of Nature’s self-assembly, defining and protecting the cell. By mimicking Nature’s designs using synthetically designed self-assemblies, researchers with advanced nanotechnological comprehension can manipulate these synthetic self-assemblies to improve many aspects of modern medicine and materials science. Understanding the competing underlying molecular interactions in self-assembly is always of interest to the academic scientific community and industry. …


Evaluation Of Additively Manufactured Lattices Under High Strain Rate Impact, Derek G. Spear 2021 Air Force Institute of Technology

Evaluation Of Additively Manufactured Lattices Under High Strain Rate Impact, Derek G. Spear

Theses and Dissertations

Several additively manufactured lattice designs and configurations were evaluated under compression loads under various strain rates from quasi-static to highly dynamic. These experiments examined how the mechanical behavior of the lattice changed based on the lattice design properties and the applied strain rates. The modulus of elasticity, yield strength, plateau stress, and toughness were observed to decrease with an increase in strain rate, revealing that the lattice designs exhibit a negative strain rate sensitivity. A new lattice flow stress model was developed to account for the mechanical response of the lattice and was incorporated into a computational model for simulation. …


Contact Angle Measurement Using A Hele-Shaw Cell: A Proof-Of-Concept Study, Haipeng Zhang, Jacob Gottberg, Sangjin Ryu 2021 University of Nebraska - Lincoln

Contact Angle Measurement Using A Hele-Shaw Cell: A Proof-Of-Concept Study, Haipeng Zhang, Jacob Gottberg, Sangjin Ryu

Mechanical & Materials Engineering Faculty Publications

Contact angle is an important property to quantify the wettability of a solid surface with a liquid, which characterizes interactions of the solid-liquid pair. Generally, to measure contact angle, special instruments such as a goniometer are necessary, but they are not readily available in certain research settings. In this study, an alternative method to measure contact angle based on a Hele-Shaw cell, microscopy imaging, and image processing is suggested. In this method, a liquid drop is injected into a transparent Hele-Shaw cell, the meniscus of the drop is captured in the top or bottom view using a brightfield microscope, and …


Contact Angle Measurement Using A Hele-Shaw Cell: A Proof-Of-Concept Study, Haipeng Zhang, Jacob Gottberg, Sangjin Ryu 2021 University of Nebraska-Lincoln

Contact Angle Measurement Using A Hele-Shaw Cell: A Proof-Of-Concept Study, Haipeng Zhang, Jacob Gottberg, Sangjin Ryu

Mechanical & Materials Engineering Faculty Publications

Contact angle is an important property to quantify the wettability of a solid surface with a liquid, which characterizes interactions of the solid-liquid pair. Generally, to measure contact angle, special instruments such as a goniometer are necessary, but they are not readily available in certain research settings. In this study, an alternative method to measure contact angle based on a Hele-Shaw cell, microscopy imaging, and image processing is suggested. In this method, a liquid drop is injected into a transparent Hele-Shaw cell, the meniscus of the drop is captured in the top or bottom view using a brightfield microscope, and …


Flexible Electronics For Neurological Electronic Skin With Multiple Sensing Modalities, Haochuan Wan 2021 Washington University in St. Louis

Flexible Electronics For Neurological Electronic Skin With Multiple Sensing Modalities, Haochuan Wan

McKelvey School of Engineering Theses & Dissertations

The evolution of electronic skin (E-skin) technology in the past decade has resulted in a great variety of flexible electronic devices that mimic the physical and chemical sensing properties of skin for applications in advanced robotics, prosthetics, and health monitoring technologies. The further advancement of E-skin technology demands closer imitation of skin receptors' transduction mechanisms, simultaneous detection of multiple information from different sources, and the study of transmission, processing and memory of the signals among the neurons. Motivated by such demands, this thesis focuses on design, fabrication, characterization of novel flexible electronic devices and integration of individual devices to realize …


Digital Commons powered by bepress