Open Access. Powered by Scholars. Published by Universities.®

Engineering Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering Physics

Potential Energy Curves And Associated Line Shape Of Alkali-Metal And Noble-Gas Interactions, Larry A. Blank Dec 2014

Potential Energy Curves And Associated Line Shape Of Alkali-Metal And Noble-Gas Interactions, Larry A. Blank

Theses and Dissertations

Recent interest in optically-pumped alkali laser systems has prompted this study into the binary interaction potentials between species of alkali-metal and rare-gas atoms and the effects of the collision of these species on the alkali-metal atom absorption spectrum. Special attention is placed on the relationship of the interaction potentials and the resulting line shape. The X2Σ+1/2, A2π1/2, A2π3/2, and B2Σ+1/2 potential energy curves and associated dipole matrix elements are computed for M+ Ng at the spin-orbit multi-reference configuration interaction level, where M = …


Finite Element Analysis Modeling Of Chemical Vapor Deposition Of Silicon Carbide, Brandon M. Allen Jun 2014

Finite Element Analysis Modeling Of Chemical Vapor Deposition Of Silicon Carbide, Brandon M. Allen

Theses and Dissertations

Fiber-reinforced silicon carbide (SiC) composite materials are important for many applications due to their high temperature strength, excellent thermal shock and impact resistance, high hardness, and good chemical stability. The microstructure and phase composition of SiC composites can be tailored by fiber surface modification, the process parameters, and/or fiber preform architecture. One process by which SiC composites can be produced is chemical vapor deposition (CVD). This thesis primarily focuses on mass transport by gas-phase flow and diffusion, chemical reaction in gas phase and on solid surfaces, and thin film formation on curved surfaces, which are fundamental to the CVD process. …


Development And Characterization Of A High Speed Mid-Ir Tunable Diode Laser Absorption Spectrometer For Co And Co2 Detection In Detonation Events, Stephen D. Wakefield Mar 2014

Development And Characterization Of A High Speed Mid-Ir Tunable Diode Laser Absorption Spectrometer For Co And Co2 Detection In Detonation Events, Stephen D. Wakefield

Theses and Dissertations

A tunable diode laser absorption spectroscopy system, capable of collecting data at a 10 kHz repetition rate near 4.5 microns. This system was made feasible in recent years due to the development of quantum cascade lasers active in the 4.5 microns region of the spectrum. Reaching into the mid-IR region of the electromagnetic spectrum allowed for an analysis of the fundamental absorption bands for both CO and CO2. The spectral absorption was measured for ethylene, methane, ethane, and propane across a variety of equivalence ratios, at various heights above a Hencken Burner surface. For each fuel, the concentration …


Iron-Doped Zinc Selenide: Spectroscopy And Laser Development, Jonathan W. Evans Mar 2014

Iron-Doped Zinc Selenide: Spectroscopy And Laser Development, Jonathan W. Evans

Theses and Dissertations

We examine the quantum mechanics of optically active ions in crystals. Insight is developed which qualitatively explains the shape of the optical absorption and emission spectra of Fe2+ ions in II-VI materials. In addition to a discussion of the relevant theory, this work explores experimental techniques for absorption spectroscopy, laser-induced fluorescence spectroscopy, and upper-state lifetime measurements in detail. The data collected from these experiments are interpreted in the context of the theories developed herein. The theory and data are used to develop a simple model of the temperature dependence of the upper-state lifetime of Fe2+ ions in ZnSe. …


Electrical Characterization Of Spherical Copper Oxide Memristive Array Sensors, James P. Orta Mar 2014

Electrical Characterization Of Spherical Copper Oxide Memristive Array Sensors, James P. Orta

Theses and Dissertations

A new System Protection (SP) technology is explored by using electrical and mechanical interference-sensing devices that are implemented with granular memristive material. The granular materials consist of oxide-coated copper spheres with radii of about 700 µm that are placed in contact to produce thin oxide junctions which exhibit memristive behavior. Processes for etching, which compared acetic acid and nitric acid etches, and thermal oxidation at 100°C are performed and compared to produce copper spheres with a copper oxide layer over the sphere surface. Oxidized copper spheres are tested as sensor arrays by loading into a capillary tube in an aligned …


Band Gap Transition Studies Of U:Tho2 Using Cathodoluminescence, Joshua D. Reding Mar 2014

Band Gap Transition Studies Of U:Tho2 Using Cathodoluminescence, Joshua D. Reding

Theses and Dissertations

The Department of Defense has expressed interest in thorium dioxide (ThO2) and uranium dioxide (UO2) as possible candidates for use as special nuclear material in designing neutron detectors. Both materials have large neutron interaction cross sections. Uranium dioxide is particularly attractive due to its semiconducting properties and a relatively small band gap of 2 eV. Both materials fluoresce under ionizing radiation making them candidates for scintillating detectors. Three Ux:Th1-xO2 (x= 0.00, 0.01, 0.22) hydrothermally grown single crystals were examined using cathodoluminescence to interrogate the changing electronic properties of ThO2 as it became an alloy. Both depth-resolved and temperature- dependent cathodoluminescence …