Open Access. Powered by Scholars. Published by Universities.®

Engineering Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2014

Discipline
Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 74

Full-Text Articles in Engineering Physics

Potential Energy Curves And Associated Line Shape Of Alkali-Metal And Noble-Gas Interactions, Larry A. Blank Dec 2014

Potential Energy Curves And Associated Line Shape Of Alkali-Metal And Noble-Gas Interactions, Larry A. Blank

Theses and Dissertations

Recent interest in optically-pumped alkali laser systems has prompted this study into the binary interaction potentials between species of alkali-metal and rare-gas atoms and the effects of the collision of these species on the alkali-metal atom absorption spectrum. Special attention is placed on the relationship of the interaction potentials and the resulting line shape. The X2Σ+1/2, A2π1/2, A2π3/2, and B2Σ+1/2 potential energy curves and associated dipole matrix elements are computed for M+ Ng at the spin-orbit multi-reference configuration interaction level, where M = …


Gas Detection Applications Of Vertically Aligned Metal Oxide Nanowire Arrays, Haiqiao Su Dec 2014

Gas Detection Applications Of Vertically Aligned Metal Oxide Nanowire Arrays, Haiqiao Su

University of New Orleans Theses and Dissertations

To build novel electronic noses for mimicking biological olfactory systems that consist of olfactory receptor arrays with large surface area and massively-diversified chemical reactivity, three dimensional (3D) vertical aligned ZnO nanowire arrays were employed as active materials for gas detection. ZnO nanowire arrays share 3D structures similar to mammalian olfactory receptor arrays, with thousands of vertical nanowires providing a high reception area which can significantly enhance the sensors’ sensitivity. Meanwhile, with different material decorations (such as SnO2, In2O3, WO3 and polymers), each array of nanowires can produce a distinguishable response for each separate …


The Development Of A Laminated Copolyester Electric Guitar, Addison S. Karnes Dec 2014

The Development Of A Laminated Copolyester Electric Guitar, Addison S. Karnes

Electronic Theses and Dissertations

This thesis is an investigation of the fabrication and assembly methodologies employed in the development of a proof-of-principle prototype electric guitar composed of laminated copolyester. The objective of the project was to develop the processes and procedures to create an optimized physical and visual bond between layers to minimize vibratory dissipation, thus maximizing sustain. A high speed CNC router, abrasive waterjet, laser engraver-cutter, as well as various manual fabrication and assembly methods were investigated in the construction of the guitar prototypes. The lamination processes explored include low-temperature, heat-assisted pressure bonding, solvent and chemical welding, and contact adhesives. The project concluded …


High Speed Control Of Atom Transfer Sequence From Magneto-Optical To Dipole Trap For Quantum Computing, Jason Garvey Schray Dec 2014

High Speed Control Of Atom Transfer Sequence From Magneto-Optical To Dipole Trap For Quantum Computing, Jason Garvey Schray

Physics

Two circuits were designed, built, and tested for the purpose of aiding in the transfer of 87Rb atoms from a MOT to dipole traps and for characterizing the final dipole traps. The first circuit was a current switch designed to quickly turn the magnetic fields of the MOT off. The magnetic coil switch was able to reduce the magnetic field intensity to 5 % of its initial value after 81 μs. The second circuit was an analog signal switch designed to turn the modulation signal of an AOM off. The analog switch was able to reduce the modulation signal intensity …


Atom-Based Geometrical Fingerprinting Of Conformal Two-Dimensional Materials, Mehrshad Mehboudi Dec 2014

Atom-Based Geometrical Fingerprinting Of Conformal Two-Dimensional Materials, Mehrshad Mehboudi

Graduate Theses and Dissertations

The shape of two-dimensional materials plays a significant role on their chemical and physical properties. Two-dimensional materials are basic meshes that are formed by mesh points (vertices) given by atomic positions, and connecting lines (edges) between points given by chemical bonds. Therefore the study of local shape and geometry of two-dimensional materials is a fundamental prerequisite to investigate physical and chemical properties. Hereby the use of discrete geometry to discuss the shape of two-dimensional materials is initiated.

The local geometry of a surface embodied in 3D space is determined using four invariant numbers from the metric and curvature tensors which …


Langmuir Probe Instrument Suite For Mesosphere Turbulence Experiment Mission, Adam Blake Dec 2014

Langmuir Probe Instrument Suite For Mesosphere Turbulence Experiment Mission, Adam Blake

Doctoral Dissertations and Master's Theses

The Langmuir probe technique is the predominant in-situ plasma diagnostic technique, and is arguably the only measurement technique that is universally own on every sounding rocket investigation. Earth's mesosphere region (80-120 km) is a host of many dynamic phenomena such as the noctilucent clouds, breaking gravity waves, inversion layers, settlement of mesospheric smoke particles, etc. As such it is critical to have a comprehensive suite of plasma diagnostics that can unambiguously measure various plasma parameters.

This thesis deals with the development and testing of three different Langmuir probe implementations suitable for investigation of the mesosphere which are to be launched …


Analysis And Optimization Of The Scheffler Solar Concentrator, Simone Alberti Dec 2014

Analysis And Optimization Of The Scheffler Solar Concentrator, Simone Alberti

Master's Theses

The Scheffler reflector is a new solar concentrator design which maintains a fixed focus while only having a single axis tracking mechanism. This design makes the construction and operation of high temperature solar concentrators accessible to developing nations. In this project, I wrote computer simulation codes to better understand the dynamics and the effect of deformation or deviations from ideal conditions in order to define necessary manufacturing and operational tolerances. These tools and knowledge drove the prototyping of new reflector concepts by myself and other students on my team. A fiberglass prototype was able to drive the cost of a …


Introducing The Newton-Poisson-Brillouin Model In The Quest For Plasmons In Metallic Carbon Nanotubes, Richard P. Zannoni Nov 2014

Introducing The Newton-Poisson-Brillouin Model In The Quest For Plasmons In Metallic Carbon Nanotubes, Richard P. Zannoni

Doctoral Dissertations

A new method is presented to model carbon nanotubes (CNT) of micron length. The Newton-Poisson-Brillouin (NPB) model uses Newtonian physics to model the interaction of a population of thermally excited quasi-particles. The NPB model is self-consistent with Poisson’s equation, and the quasi-particles are confined to the CNT’s band structure. In this work, we explore the parameter space of the model.


Studies On The Wrinkling Of Thin Polymer Films Floating On Liquid, Kamil B. Toga Nov 2014

Studies On The Wrinkling Of Thin Polymer Films Floating On Liquid, Kamil B. Toga

Doctoral Dissertations

This dissertation aims to broaden our understanding on wrinkling instabilities occurring on floating polymeric sheets, and tries to establish innovative methods that exploit these patterns in studies on material behavior and interfacial phenomena. We will address three major topics in this thesis including, i) characterization of the conditions required to buckle an annular disc, ii) characterization of wrinkles occurring around a droplet/bubble placed on a membrane that is kept taut at the liquid-air interface, and iii) using wrinkling patterns as a probe to understand the interfacial behavior and dynamics of ultrathin films. The first project in this thesis is about …


Incoherent Scatter Radar Observations Of Dynamic Ion Composition Changes At High Latitudes During Geomagnetic Storms, Bryan C. Wright Nov 2014

Incoherent Scatter Radar Observations Of Dynamic Ion Composition Changes At High Latitudes During Geomagnetic Storms, Bryan C. Wright

Doctoral Dissertations and Master's Theses

Two new methods are developed for estimating F region ion composition from field-aligned incoherent scatter radar (ISR) measurements. These methods address incoherent scatter spectra temperature-mass ambiguities by self-consistently modeling ion temperature profiles as a function of electric fields and plasma interactions with the neutral atmosphere. These two new methods improve on previous, similar work developed in Zettergren et al. [2010,2011] by incorporating more accurate physical models and improving the estimation procedures. These techniques enable studies of ionospheric composition during highly disturbed conditions and are suitable for data collected with short integration times (2-10 minutes). The improved models incorporate the effects …


Sustainability Research Through The Lens Of Environmental Ethics, Daniel Clifford Fouke, Sukh Sidhu, Robert J. Brecha Oct 2014

Sustainability Research Through The Lens Of Environmental Ethics, Daniel Clifford Fouke, Sukh Sidhu, Robert J. Brecha

Physics Faculty Publications

Two core courses in the curriculum of the University of Dayton’s Sustainability, Energy, and the Environment minor, Sustainability Research I and II, were developed out of the frustration one author, Daniel Fouke, experienced while teaching a traditional course on environmental ethics for the Department of Philosophy. The often-overwhelming nature of environmental problems tended to demoralize both the instructor and the students. Seeking a way to integrate ethical analysis of complex problems with the search for solutions, two courses were proposed that would be team-taught by a philosopher and a scientist or an engineer.

Development of the courses was initially funded …


Ion-Cyclotron Resonance Heating Of O+ In The Topside Ionosphere And Mapping Outflows To The Magnetosphere, Anthony W. Pritchard Sep 2014

Ion-Cyclotron Resonance Heating Of O+ In The Topside Ionosphere And Mapping Outflows To The Magnetosphere, Anthony W. Pritchard

Doctoral Dissertations and Master's Theses

This thesis considers the heavy ion dynamics due to ion-cyclotron resonance energization processes that take place in the turbulent region of the Earth’s topside, high latitude ionosphere. We simulate the impact of this transverse heating process upon energies and velocity distribution functions of outflowing oxygen ions (O+) in the approximate altitude range of 800 km to 15,000 km. To do so most effectively, we use a single particle tracing model that precisely reproduces the small-scale wave-particle interaction of broadband extremely low frequency (BBELF) waves with the ions’ cyclotron motions, leading to the upward acceleration of ions in type-II ion outflows …


Gosam-2.0: A Tool For Automated One-Loop Calculations Within Thestandard Model And Beyond, Gavin Cullen, Hans Van Deurzen, Nicolas Greiner, Gudrun Heinrich, Gionata Luisoni, Pierpaolo Mastrolia, Edoardo Mirabella, Giovanni Ossola, Tiziano Peraro, Johannes Schlenk, Johann Felix Von Soden-Fraunhofen, Francesco Tramontano Aug 2014

Gosam-2.0: A Tool For Automated One-Loop Calculations Within Thestandard Model And Beyond, Gavin Cullen, Hans Van Deurzen, Nicolas Greiner, Gudrun Heinrich, Gionata Luisoni, Pierpaolo Mastrolia, Edoardo Mirabella, Giovanni Ossola, Tiziano Peraro, Johannes Schlenk, Johann Felix Von Soden-Fraunhofen, Francesco Tramontano

Publications and Research

We present the version 2.0 of the program pack-ageGoSamfor the automated calculation of one-loop ampli-tudes.GoSamis devised to compute one-loop QCD and/orelectroweak corrections to multi-particle processes withinand beyond the Standard Model. The new code containsimprovements in the generation and in the reduction of theamplitudes, performs better in computing time and numer-ical accuracy, and has an extended range of applicability.The extended version of the “Binoth-Les-Houches-Accord”interface to Monte Carlo programs is also implemented. Wegive a detailed description of installation and usage of thecode, and illustrate the new features in dedicated examples.


Investigation Of Carrier Transit Motion In Pcdtbt By Optical Shg Technique, Shahino Mah Abdullah Aug 2014

Investigation Of Carrier Transit Motion In Pcdtbt By Optical Shg Technique, Shahino Mah Abdullah

Shahino Mah Abdullah

We analyze the carrier transit behavior in poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT), which has been reported as a donor material for efficient bulk hetero junction photovolatic devices. The transfer and transient carrier mobilities in the PCDTBT thin films have been measured and analyzed. The transfer mobility has been measured by the transfer curve of the OFET, whereas, the transient mobility is recorded using a time-resolved electric-field-induced optical second-harmonic-generation (TRM-SHG) technique. Using TRM-SHG technique, the dynamic motion of the charge carriers in the PCDTBT thin films has been directly visualized. We anticipate that the analysis of the carrier motion by TRM-SHG, will be effective …


Environmental Testing Of Lasers For Jpl's Cold Atom Laboratory, Carey L. Baxter Aug 2014

Environmental Testing Of Lasers For Jpl's Cold Atom Laboratory, Carey L. Baxter

STAR Program Research Presentations

NASA’s Cold Atom Lab (CAL) is a multi-user facility designed to study ultra-cold quantum gases in the microgravity environment of the International Space Station (ISS). One of the main goals of CAL is to explore the unknown territory of extremely low temperatures—possibly as low as the picokelvin range!—where new and fascinating quantum phenomena can be observed. At such temperatures matter stops behaving as particles and instead becomes macroscopic matter waves. CAL will be remotely controlled to perform a multitude of experiments and is scheduled to launch in 2016. In order to anticipate problems that might occur during and post-launch, including …


A Prototype Microwave Cavity Control Circuit For Use In Next Generation Free Electron Laser, Josh Thompson, Peter Neal Barrina, Jiayi Jiang, Joe Frisch, Steve Smith, Daniel Van Winkle Aug 2014

A Prototype Microwave Cavity Control Circuit For Use In Next Generation Free Electron Laser, Josh Thompson, Peter Neal Barrina, Jiayi Jiang, Joe Frisch, Steve Smith, Daniel Van Winkle

STAR Program Research Presentations

One of the current programs at SLAC National Accelerator Laboratory is the Linac Coherent Light Source, or LCLS. Using the existing hardware of the last third of their linear accelerator (or “linac”), SLAC has created one of the most energetic X-ray free electron lasers (or “FEL”). Since 2009, LCLS has used this FEL to perform a wide range of experiments across all sciences, most notably ultrafast filming at the molecular scale. As requests for beam-time with this laser increases, SLAC is purposing a linac upgrade to better match this demand. This upgrade, named LCLS-II, will replace existing copper radio frequency …


Does A Plastron Improve Heat Transfer?, Madani A. Khan, Jeffrey Alston, Andrew Guenthner Aug 2014

Does A Plastron Improve Heat Transfer?, Madani A. Khan, Jeffrey Alston, Andrew Guenthner

STAR Program Research Presentations

Superamphiphobic surfaces strongly repel both water and oils. In this work, aluminum coupons are processed by sanding with various grit of sand paper to impart microscale roughness. Subsequent submersion of the aluminum substrate in boiling water grows nanoscale grass-like structures. The oxide layer of Al is slightly soluble in water. During a fast diffusion/equilibrium, Al2O3 nanograss grows on the surface. A low energy coating is then deposited on the surface. The micro and nanoscale features create re-entrant structures that trap air enabling contact liquid to be in a Cassie-Baxter state. Superamphiphobicity of the samples were confirmed by …


Open Source Electronics For Laboratory Physics, Zengqiang John Liu Jul 2014

Open Source Electronics For Laboratory Physics, Zengqiang John Liu

Physics and Astronomy Faculty Presentations

Open-source electronics are electrical circuits and devices whose designs are released to the public by the designers, so others may modify and improve them. Using open-source data acquisition electronics in laboratory physics will dramatically reduce the cost of laboratory electronics and empower instructors to develop new laboratory activities, demonstrations and exploratory projects with students. This workshop will improve participants' understanding of open-source electronics and their applications in laboratory physics. Many laboratory physics sensors and open-source devices will be introduces and demonstrated. The workshop provides hands-on experiences in projects using laboratory physics sensors with an award-winning, low-cost, open-source electronic data acquisition …


Finite Element Analysis Modeling Of Chemical Vapor Deposition Of Silicon Carbide, Brandon M. Allen Jun 2014

Finite Element Analysis Modeling Of Chemical Vapor Deposition Of Silicon Carbide, Brandon M. Allen

Theses and Dissertations

Fiber-reinforced silicon carbide (SiC) composite materials are important for many applications due to their high temperature strength, excellent thermal shock and impact resistance, high hardness, and good chemical stability. The microstructure and phase composition of SiC composites can be tailored by fiber surface modification, the process parameters, and/or fiber preform architecture. One process by which SiC composites can be produced is chemical vapor deposition (CVD). This thesis primarily focuses on mass transport by gas-phase flow and diffusion, chemical reaction in gas phase and on solid surfaces, and thin film formation on curved surfaces, which are fundamental to the CVD process. …


The Use Of Object-Oriented Programming Concepts For Documenting A Model Ensemble, Georgii A. Alexandrov Jun 2014

The Use Of Object-Oriented Programming Concepts For Documenting A Model Ensemble, Georgii A. Alexandrov

International Congress on Environmental Modelling and Software

The spread of cloud computing services gives community modelling a reasonable opportunity to become a reality in scientific research. However, even if models will be deployed in clouds, and model codes will be open for re-use, there will be little progress in community modelling in the lack of consensus standards for model documentation. This paper is to discuss a conceptual framework for developing such standards. The proposed conceptual framework is based on the idea that a new model is often a modification of an old one, and hence, the similarities between the models of the same environmental process could be …


Effect Of Z1/2, Eh5, And Ci1 Deep Defects On The Performance Of N-Type 4h-Sic Epitaxial Layers Schottky Detectors: Alpha Spectroscopy And Deep Level Transient Spectroscopy Studies, M. A. Mannan, S. K. Chaudhuri, K. V. Nguyen, K. C. Mandal Jun 2014

Effect Of Z1/2, Eh5, And Ci1 Deep Defects On The Performance Of N-Type 4h-Sic Epitaxial Layers Schottky Detectors: Alpha Spectroscopy And Deep Level Transient Spectroscopy Studies, M. A. Mannan, S. K. Chaudhuri, K. V. Nguyen, K. C. Mandal

Faculty Publications

No abstract provided.


Rubidium-Based Atomic Clock, Kate Miles Jun 2014

Rubidium-Based Atomic Clock, Kate Miles

Physics

In this paper we will explore the process of building an atomic clock from a function generator, go into an in-depth introductory discussion of the Datum LPRO, and examine how rubidium function generators work.


Laser Doppler Velocimetry: Flow Measurement Using A Digital Micromirror Device, Dawei Kuo Jun 2014

Laser Doppler Velocimetry: Flow Measurement Using A Digital Micromirror Device, Dawei Kuo

Physics

In this experiment we utilize a Texas Instruments Digital Micromirror Device to impart a phase shift to the beams of a laser Doppler velocimeter. The advantages of this approach include low cost, low power consumption, a precisely known phase-stepping frequency, and the capability of working with a broad range of optical wavelengths. The velocities measured with the set up shown here are of order 1 cm/s.


Lightweight Uav Launcher, Ben Miller, Christian Valoria, Corinne Warnock, Jake Coutlee Jun 2014

Lightweight Uav Launcher, Ben Miller, Christian Valoria, Corinne Warnock, Jake Coutlee

Mechanical Engineering

This report discusses the design, construction, and testing of a lightweight, portable UAV launcher. There is a current need for a small team of soldiers to launch a US Marine Tier II UAV in a remote location without transport. Research was conducted into existing UAV launcher designs and the pros and cons of each were recorded. This research served as a basis for concept generation during the initial design development stage. It was required that the design weigh less than 110 lbs, occupy a smaller volume than 48" x 24" 18" in its collapsed state, be portable by a single …


Design And Implementation Of Anti-Ballistic Missile System Using Video Motion Detection And A Nerf Gun, Steven Bowman Jun 2014

Design And Implementation Of Anti-Ballistic Missile System Using Video Motion Detection And A Nerf Gun, Steven Bowman

Physics

The goal of this senior project was to use a video camera and a dart gun to create an antiballistic missile dart launcher. I created a motion detecting and trajectory calculating program with a webcam and linked it to a Nerf dart gun to fire Nerf darts at airborne projectiles. Despite the creation of successful trajectory calculating and dart launching systems, my best efforts have resulted in an inconsistent anti-ballistic system where a very small number of projectiles are actually hit.


Ultrasonic Bonding For The Cuore Collaboration, John J. Sekerak Ii Jun 2014

Ultrasonic Bonding For The Cuore Collaboration, John J. Sekerak Ii

Physics

This paper will give the reader a brief introduction to the Standard Model, Neutrinoless Double Beta Decay, and the CUORE experiment under construction at Gran Sasso National Lab in Assergi, Italy. The remainder of the paper will describe the bonding process used to connect the heater pads and NTDs to the copper housings of the tower structure. Extensive details of the troubleshooting and calibration period are presented as a way for the reader to better understand the concepts involved during the bonding stage of the assembly process.


Investigation Of The Addition Of Basalt Fibres Into Cement, Jahi Palme May 2014

Investigation Of The Addition Of Basalt Fibres Into Cement, Jahi Palme

Masters Theses & Specialist Projects

Mechanical properties of concrete are most commonly determined using destructive tests including: compression, flexure, and fracture notch specimen tests. However, nondestructive tests exist for evaluating the properties of concrete such as ultrasonic pulse velocity and impact echo tests. One of major issues with concrete (which has cement as its prime ingredient) is that unlike steel it is quasi-brittle material. It tends to want to crack when tensile stresses develop. Fibres have been added to concrete for many years to reduce the amount of and size of cracks cause by temperature changes or shrinkage. In more recent years, significant research has …


Multi-Physics Modeling Of Terahertz And Millimeter-Wave Devices, Mohammad Ali Khorrami May 2014

Multi-Physics Modeling Of Terahertz And Millimeter-Wave Devices, Mohammad Ali Khorrami

Graduate Theses and Dissertations

In recent years, there have been substantial efforts to design and fabricate millimeter-wave and terahertz (THz) active and passive devices. Operation of microwave and photonic devices in THz range is limited due to limited maximum allowable electron velocity at semiconductor materials, and large dimensions of optical structures that prohibit their integration into nano-size packages, respectively. In order to address these issues, the application of surface plasmons (SPs) is mostly suggested to advance plasmonic devices and make this area comparable to photonics or electronics.

In this research, the feasibility of implementing THz and millimeter-wave plasmonic devices inside different material platforms including: …


Increasing Interest Of Young Women In Engineering, Diane Hinterlong, Branson Lawrence, Purva Devol Apr 2014

Increasing Interest Of Young Women In Engineering, Diane Hinterlong, Branson Lawrence, Purva Devol

Publications & Research

The internationally recognized Illinois Mathematics and Science Academy (IMSA) develops creative, ethical leaders in science, technology, engineering and mathematics. As a teaching and learning laboratory created by the State of Illinois, IMSA enrolls academically talented Illinois students in grades 10 through 12 in its advanced, residential college preparatory program. IMSA also serves thousands of educators and students in Illinois and beyond through innovative instructional programs that foster imagination and inquiry. IMSA also advances education through research, groundbreaking ventures and strategic partnerships.


A Boxer's Punch, Jacob A. Ekegren Apr 2014

A Boxer's Punch, Jacob A. Ekegren

Physics

For over a year now, I have been interested in the sport of boxing. This fascination led me to explore what occurs to a human head upon impact from a boxer’s punch. It is known that a knockout occurs when blood circulation to the brain is compressed. This compression results from the sudden acceleration and deceleration of the head. Therefore, the primary focus of this experiment explores the relative effort necessary to cause significant movement to a head about a neck.