Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Deep learning

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 781

Full-Text Articles in Physical Sciences and Mathematics

Historical Perspectives In Volatility Forecasting Methods With Machine Learning, Zhiang Qiu, Clemens Kownatzki, Fabien Scalzo, Eun Sang Cha Mar 2024

Historical Perspectives In Volatility Forecasting Methods With Machine Learning, Zhiang Qiu, Clemens Kownatzki, Fabien Scalzo, Eun Sang Cha

Seaver College Research And Scholarly Achievement Symposium

Volatility forecasting in the financial market plays a pivotal role across a spectrum of disciplines, such as risk management, option pricing, and market making. However, volatility forecasting is challenging because volatility can only be estimated, and different factors influence volatility, ranging from macroeconomic indicators to investor sentiments. While recent works suggest advances in machine learning and artificial intelligence for volatility forecasting, a comprehensive benchmark of current statistical and learning-based methods for such purposes is lacking. Thus, this paper aims to provide a comprehensive survey of the historical evolution of volatility forecasting with a comparative benchmark of key landmark models. We …


The Impact Of Artificial Intelligence And Machine Learning On Organizations Cybersecurity, Mustafa Abdulhussein Feb 2024

The Impact Of Artificial Intelligence And Machine Learning On Organizations Cybersecurity, Mustafa Abdulhussein

Doctoral Dissertations and Projects

As internet technology proliferate in volume and complexity, the ever-evolving landscape of malicious cyberattacks presents unprecedented security risks in cyberspace. Cybersecurity challenges have been further exacerbated by the continuous growth in the prevalence and sophistication of cyber-attacks. These threats have the capacity to disrupt business operations, erase critical data, and inflict reputational damage, constituting an existential threat to businesses, critical services, and infrastructure. The escalating threat is further compounded by the malicious use of artificial intelligence (AI) and machine learning (ML), which have increasingly become tools in the cybercriminal arsenal. In this dynamic landscape, the emergence of offensive AI introduces …


Motion Magnification-Inspired Feature Manipulation For Deepfake Detection, Aydamir Mirzayev, Hamdi Di̇bekli̇oğlu Feb 2024

Motion Magnification-Inspired Feature Manipulation For Deepfake Detection, Aydamir Mirzayev, Hamdi Di̇bekli̇oğlu

Turkish Journal of Electrical Engineering and Computer Sciences

Recent advances in deep learning, increased availability of large-scale datasets, and improvement of accelerated graphics processing units facilitated creation of an unprecedented amount of synthetically generated media content with impressive visual quality. Although such technology is used predominantly for entertainment, there is widespread practice of using deepfake technology for malevolent ends. This potential for malicious use necessitates the creation of detection methods capable of reliably distinguishing manipulated video content. In this work we aim to create a learning-based detection method for synthetically generated videos. To this end, we attempt to detect spatiotemporal inconsistencies by leveraging a learning-based magnification-inspired feature manipulation …


Automated Identification Of Vehicles In Very High-Resolution Uav Orthomosaics Using Yolov7 Deep Learning Model, Esra Yildirim, Umut Güneş Seferci̇k, Taşkın Kavzoğlu Feb 2024

Automated Identification Of Vehicles In Very High-Resolution Uav Orthomosaics Using Yolov7 Deep Learning Model, Esra Yildirim, Umut Güneş Seferci̇k, Taşkın Kavzoğlu

Turkish Journal of Electrical Engineering and Computer Sciences

The utilization of remote sensing products for vehicle detection through deep learning has gained immense popularity, especially due to the advancement of unmanned aerial vehicles (UAVs). UAVs offer millimeter-level spatial resolution at low flight altitudes, which surpasses traditional airborne platforms. Detecting vehicles from very high-resolution UAV data is crucial in numerous applications, including parking lot and highway management, traffic monitoring, search and rescue missions, and military operations. Obtaining UAV data at desired periods allows the detection and tracking of target objects even several times during a day. Despite challenges such as diverse vehicle characteristics, traffic congestion, and hardware limitations, the …


Blood Cell Image Segmentation And Classification: A Systematic Review, Muhammad Shahzad, Farman Ali, Syed Hamad Shirazi, Assad Rasheed, Awais Ahmad, Babar Shah, Daehan Kwak Feb 2024

Blood Cell Image Segmentation And Classification: A Systematic Review, Muhammad Shahzad, Farman Ali, Syed Hamad Shirazi, Assad Rasheed, Awais Ahmad, Babar Shah, Daehan Kwak

All Works

Background Blood diseases such as leukemia, anemia, lymphoma, and thalassemia are hematological disorders that relate to abnormalities in the morphology and concentration of blood elements, specifically white blood cells (WBC) and red blood cells (RBC). Accurate and efficient diagnosis of these conditions significantly depends on the expertise of hematologists and pathologists. To assist the pathologist in the diagnostic process, there has been growing interest in utilizing computer-aided diagnostic (CAD) techniques, particularly those using medical image processing and machine learning algorithms. Previous surveys in this domain have been narrowly focused, often only addressing specific areas like segmentation or classification but lacking …


Dataset Of Arabic Spam And Ham Tweets, Sanaa Kaddoura, Safaa Henno Feb 2024

Dataset Of Arabic Spam And Ham Tweets, Sanaa Kaddoura, Safaa Henno

All Works

This data article provides a dataset of 132421 posts and their corresponding information collected from Twitter social media. The data has two classes, ham or spam, where ham indicates non-spam clean tweets. The main target of this dataset is to study a way to classify whether a post is a spam or not automatically. The data is in Arabic language only, which makes the data essential to the researchers in Arabic natural language processing (NLP) due to the lack of resources in this language. The data is made publicly available to allow researchers to use it as a benchmark for …


Catnet: Cross-Modal Fusion For Audio-Visual Speech Recognition, Xingmei Wang, Jianchen Mi, Boquan Li, Yixu Zhao, Jiaxiang Meng Feb 2024

Catnet: Cross-Modal Fusion For Audio-Visual Speech Recognition, Xingmei Wang, Jianchen Mi, Boquan Li, Yixu Zhao, Jiaxiang Meng

Research Collection School Of Computing and Information Systems

Automatic speech recognition (ASR) is a typical pattern recognition technology that converts human speeches into texts. With the aid of advanced deep learning models, the performance of speech recognition is significantly improved. Especially, the emerging Audio–Visual Speech Recognition (AVSR) methods achieve satisfactory performance by combining audio-modal and visual-modal information. However, various complex environments, especially noises, limit the effectiveness of existing methods. In response to the noisy problem, in this paper, we propose a novel cross-modal audio–visual speech recognition model, named CATNet. First, we devise a cross-modal bidirectional fusion model to analyze the close relationship between audio and visual modalities. Second, …


Action Recognition Model Of Directed Attention Based On Cosine Similarity, Chen Li, Ming He, Chen Dong, Wei Li Jan 2024

Action Recognition Model Of Directed Attention Based On Cosine Similarity, Chen Li, Ming He, Chen Dong, Wei Li

Journal of System Simulation

Abstract: Aiming at the lack of directionality of traditional dot product attention, this paper proposes a directed attention model (DAM) based on cosine similarity. To effectively represent the direction relationship between the spatial and temporal features of video frames, the paper defines the relationship function in the attention mechanism using the cosine similarity theory, which can remove the absolute value of the relationship between features. To reduce the computational burden of the attention mechanism, the operation is decomposed from two dimensions of time and space. The computational complexity is further optimized by combining linear attention operation. The experiment is divided …


Open System Neural Networks, Bradley Hatch Jan 2024

Open System Neural Networks, Bradley Hatch

Theses and Dissertations

Recent advances in self-supervised learning have made it possible to reuse information-rich models that have been generally pre-trained on massive amounts of data for other downstream tasks. But the pre-training process can be drastically different from the fine-tuning training process, which can lead to inefficient learning. We address this disconnect in training dynamics by structuring the learning process like an open system in thermodynamics. Open systems can achieve a steady state when low-entropy inputs are converted to high-entropy outputs. We modify the the model and the learning process to mimic this behavior, and attend more to elements of the input …


Machine Learning As A Tool For Early Detection: A Focus On Late-Stage Colorectal Cancer Across Socioeconomic Spectrums, Hadiza Galadima, Rexford Anson-Dwamena, Ashley Johnson, Ghalib Bello, Georges Adunlin, James Blando Jan 2024

Machine Learning As A Tool For Early Detection: A Focus On Late-Stage Colorectal Cancer Across Socioeconomic Spectrums, Hadiza Galadima, Rexford Anson-Dwamena, Ashley Johnson, Ghalib Bello, Georges Adunlin, James Blando

Community & Environmental Health Faculty Publications

Purpose: To assess the efficacy of various machine learning (ML) algorithms in predicting late-stage colorectal cancer (CRC) diagnoses against the backdrop of socio-economic and regional healthcare disparities. Methods: An innovative theoretical framework was developed to integrate individual- and census tract-level social determinants of health (SDOH) with sociodemographic factors. A comparative analysis of the ML models was conducted using key performance metrics such as AUC-ROC to evaluate their predictive accuracy. Spatio-temporal analysis was used to identify disparities in late-stage CRC diagnosis probabilities. Results: Gradient boosting emerged as the superior model, with the top predictors for late-stage CRC diagnosis being anatomic site, …


Nonuniform Sampling-Based Breast Cancer Classification, Santiago Posso Jan 2024

Nonuniform Sampling-Based Breast Cancer Classification, Santiago Posso

Theses and Dissertations--Electrical and Computer Engineering

The emergence of deep learning models and their success in visual object recognition have fueled the medical imaging community's interest in integrating these algorithms to improve medical diagnosis. However, natural images, which have been the main focus of deep learning models and mammograms, exhibit fundamental differences. First, breast tissue abnormalities are often smaller than salient objects in natural images. Second, breast images have significantly higher resolutions but are generally heavily downsampled to fit these images to deep learning models. Models that handle high-resolution mammograms require many exams and complex architectures. Additionally, spatially resizing mammograms leads to losing discriminative details essential …


The Deep Bsde Method, Daniel Kovach Jan 2024

The Deep Bsde Method, Daniel Kovach

Masters Theses

"The curse of dimensionality is the non-linear growth in computing time as the dimension of a problem increases. Using the Deep Backwards Stochastic Differential Equation (Deep BSDE) method developed in [HJE18], I approximate the solution at an initial time to a one-dimensional diffusion equation. Although we only approximate a one-dimensional equation, this method extends well to higher dimensions because it overcomes the curse of dimensionality by evaluating the given partial differential equation along "random characteristics''. In addition to the implementation, I also present most of the mathematical theory needed to understand this method"-- Abstract, p. iii


A Survey On Few-Shot Class-Incremental Learning, Songsong Tian, Lusi Li, Weijun Li, Hang Ran, Xin Ning, Prayag Tiwari Jan 2024

A Survey On Few-Shot Class-Incremental Learning, Songsong Tian, Lusi Li, Weijun Li, Hang Ran, Xin Ning, Prayag Tiwari

Computer Science Faculty Publications

Large deep learning models are impressive, but they struggle when real-time data is not available. Few-shot class-incremental learning (FSCIL) poses a significant challenge for deep neural networks to learn new tasks from just a few labeled samples without forgetting the previously learned ones. This setup can easily leads to catastrophic forgetting and overfitting problems, severely affecting model performance. Studying FSCIL helps overcome deep learning model limitations on data volume and acquisition time, while improving practicality and adaptability of machine learning models. This paper provides a comprehensive survey on FSCIL. Unlike previous surveys, we aim to synthesize few-shot learning and incremental …


Urban Flood Extent Segmentation And Evaluation From Real-World Surveillance Camera Images Using Deep Convolutional Neural Network, Yidi Wang, Yawen Shen, Behrouz Salahshour, Mecit Cetin, Khan Iftekharuddin, Navid Tahvildari, Guoping Huang, Devin K. Harris, Kwame Ampofo, Jonathan L. Goodall Jan 2024

Urban Flood Extent Segmentation And Evaluation From Real-World Surveillance Camera Images Using Deep Convolutional Neural Network, Yidi Wang, Yawen Shen, Behrouz Salahshour, Mecit Cetin, Khan Iftekharuddin, Navid Tahvildari, Guoping Huang, Devin K. Harris, Kwame Ampofo, Jonathan L. Goodall

Civil & Environmental Engineering Faculty Publications

This study explores the use of Deep Convolutional Neural Network (DCNN) for semantic segmentation of flood images. Imagery datasets of urban flooding were used to train two DCNN-based models, and camera images were used to test the application of the models with real-world data. Validation results show that both models extracted flood extent with a mean F1-score over 0.9. The factors that affected the performance included still water surface with specular reflection, wet road surface, and low illumination. In testing, reduced visibility during a storm and raindrops on surveillance cameras were major problems that affected the segmentation of flood extent. …


Malware Detection With Artificial Intelligence: A Systematic Literature Review, Matthew G. Gaber, Mohiuddin Ahmed, Helge Janicke Jan 2024

Malware Detection With Artificial Intelligence: A Systematic Literature Review, Matthew G. Gaber, Mohiuddin Ahmed, Helge Janicke

Research outputs 2022 to 2026

In this survey, we review the key developments in the field of malware detection using AI and analyze core challenges. We systematically survey state-of-the-art methods across five critical aspects of building an accurate and robust AI-powered malware-detection model: malware sophistication, analysis techniques, malware repositories, feature selection, and machine learning vs. deep learning. The effectiveness of an AI model is dependent on the quality of the features it is trained with. In turn, the quality and authenticity of these features is dependent on the quality of the dataset and the suitability of the analysis tool. Static analysis is fast but is …


Multimodal Fusion For Audio-Image And Video Action Recognition, Muhammad B. Shaikh, Douglas Chai, Syed M. S. Islam, Naveed Akhtar Jan 2024

Multimodal Fusion For Audio-Image And Video Action Recognition, Muhammad B. Shaikh, Douglas Chai, Syed M. S. Islam, Naveed Akhtar

Research outputs 2022 to 2026

Multimodal Human Action Recognition (MHAR) is an important research topic in computer vision and event recognition fields. In this work, we address the problem of MHAR by developing a novel audio-image and video fusion-based deep learning framework that we call Multimodal Audio-Image and Video Action Recognizer (MAiVAR). We extract temporal information using image representations of audio signals and spatial information from video modality with the help of Convolutional Neutral Networks (CNN)-based feature extractors and fuse these features to recognize respective action classes. We apply a high-level weights assignment algorithm for improving audio-visual interaction and convergence. This proposed fusion-based framework utilizes …


Model-Based Deep Autoencoders For Clustering Single-Cell Rna Sequencing Data With Side Information, Xiang Lin Dec 2023

Model-Based Deep Autoencoders For Clustering Single-Cell Rna Sequencing Data With Side Information, Xiang Lin

Dissertations

Clustering analysis has been conducted extensively in single-cell RNA sequencing (scRNA-seq) studies. scRNA-seq can profile tens of thousands of genes' activities within a single cell. Thousands or tens of thousands of cells can be captured simultaneously in a typical scRNA-seq experiment. Biologists would like to cluster these cells for exploring and elucidating cell types or subtypes. Numerous methods have been designed for clustering scRNA-seq data. Yet, single-cell technologies develop so fast in the past few years that those existing methods do not catch up with these rapid changes and fail to fully fulfil their potential. For instance, besides profiling transcription …


Deep Learning Uncertainty Quantification For Clinical Text Classification, Alina Peluso, Ioana Danciu, Hong-Jun Yoon, Jamaludin Mohd Yusof, Tanmoy Bhattacharya, Adam Spannaus, Noah Schaefferkoetter, Eric B. Durbin, Xiao-Cheng Wu, Antoinette Stroup, Jennifer Doherty, Stephen Schwartz, Charles Wiggins, Linda Coyle, Lynne Penberthy, Georgia D. Tourassi, Shang Gao Dec 2023

Deep Learning Uncertainty Quantification For Clinical Text Classification, Alina Peluso, Ioana Danciu, Hong-Jun Yoon, Jamaludin Mohd Yusof, Tanmoy Bhattacharya, Adam Spannaus, Noah Schaefferkoetter, Eric B. Durbin, Xiao-Cheng Wu, Antoinette Stroup, Jennifer Doherty, Stephen Schwartz, Charles Wiggins, Linda Coyle, Lynne Penberthy, Georgia D. Tourassi, Shang Gao

School of Public Health Faculty Publications

INTRODUCTION: Machine learning algorithms are expected to work side-by-side with humans in decision-making pipelines. Thus, the ability of classifiers to make reliable decisions is of paramount importance. Deep neural networks (DNNs) represent the state-of-the-art models to address real-world classification. Although the strength of activation in DNNs is often correlated with the network's confidence, in-depth analyses are needed to establish whether they are well calibrated. METHOD: In this paper, we demonstrate the use of DNN-based classification tools to benefit cancer registries by automating information extraction of disease at diagnosis and at surgery from electronic text pathology reports from the US National …


Deep Learning Image Analysis To Isolate And Characterize Different Stages Of S-Phase In Human Cells, Kevin A. Boyd, Rudranil Mitra, John Santerre, Christopher L. Sansam Dec 2023

Deep Learning Image Analysis To Isolate And Characterize Different Stages Of S-Phase In Human Cells, Kevin A. Boyd, Rudranil Mitra, John Santerre, Christopher L. Sansam

SMU Data Science Review

Abstract. This research used deep learning for image analysis by isolating and characterizing distinct DNA replication patterns in human cells. By leveraging high-resolution microscopy images of multiple cells stained with 5-Ethynyl-2′-deoxyuridine (EdU), a replication marker, this analysis utilized Convolutional Neural Networks (CNNs) to perform image segmentation and to provide robust and reliable classification results. First multiple cells in a field of focus were identified using a pretrained CNN called Cellpose. After identifying the location of each cell in the image a python script was created to crop out each cell into individual .tif files. After careful annotation, a CNN was …


Customer Churn Prediction Using Composite Deep Learning Technique, Asad Khattak, Zartashia Mehak, Hussain Ahmad, Muhammad Usama Asghar, Muhammad Zubair Asghar, Aurangzeb Khan Dec 2023

Customer Churn Prediction Using Composite Deep Learning Technique, Asad Khattak, Zartashia Mehak, Hussain Ahmad, Muhammad Usama Asghar, Muhammad Zubair Asghar, Aurangzeb Khan

All Works

Customer churn, a phenomenon that causes large financial losses when customers leave a business, makes it difficult for modern organizations to retain customers. When dissatisfied customers find their present company's services inadequate, they frequently migrate to another service provider. Machine learning and deep learning (ML/DL) approaches have already been used to successfully identify customer churn. In some circumstances, however, ML/DL-based algorithms lacks in delivering promising results for detecting client churn. Previous research on estimating customer churn revealed unexpected forecasts when utilizing machine learning classifiers and traditional feature encoding methodologies. Deep neural networks were also used in these efforts to extract …


Data-Centric Image Super-Resolution In Magnetic Resonance Imaging: Challenges And Opportunities, Mamata Shrestha Dec 2023

Data-Centric Image Super-Resolution In Magnetic Resonance Imaging: Challenges And Opportunities, Mamata Shrestha

Graduate Theses and Dissertations

Super-resolution has emerged as a crucial research topic in the field of Magnetic Resonance Imaging (MRI) where it plays an important role in understanding and analysis of complex, qualitative, and quantitative characteristics of tissues at high resolutions. Deep learning techniques have been successful in achieving state-of-the-art results for super-resolution. These deep learning-based methods heavily rely on a substantial amount of data. Additionally, they require a pair of low-resolution and high-resolution images for supervised training which is often unavailable. Particularly in MRI super-resolution, it is often impossible to have low-resolution and high-resolution training image pairs. To overcome this, existing methods for …


Distxplore: Distribution-Guided Testing For Evaluating And Enhancing Deep Learning Systems, Longtian Wang, Xiaofei Xie, Xiaoning Du, Meng Tian, Qing Guo, Zheng Yang, Chao Shen Dec 2023

Distxplore: Distribution-Guided Testing For Evaluating And Enhancing Deep Learning Systems, Longtian Wang, Xiaofei Xie, Xiaoning Du, Meng Tian, Qing Guo, Zheng Yang, Chao Shen

Research Collection School Of Computing and Information Systems

Deep learning (DL) models are trained on sampled data, where the distribution of training data differs from that of real-world data (i.e., the distribution shift), which reduces the model's robustness. Various testing techniques have been proposed, including distribution-unaware and distribution-aware methods. However, distribution-unaware testing lacks effectiveness by not explicitly considering the distribution of test cases and may generate redundant errors (within same distribution). Distribution-aware testing techniques primarily focus on generating test cases that follow the training distribution, missing out-of-distribution data that may also be valid and should be considered in the testing process. In this paper, we propose a novel …


Deep Learning With Effective Hierarchical Attention Mechanisms In Perception Of Autonomous Vehicles, Qiuxiao Chen Dec 2023

Deep Learning With Effective Hierarchical Attention Mechanisms In Perception Of Autonomous Vehicles, Qiuxiao Chen

All Graduate Theses and Dissertations, Fall 2023 to Present

Autonomous vehicles need to gather and understand information from their surroundings to drive safely. Just like how we look around and understand what's happening on the road, these vehicles need to see and make sense of dynamic objects like other cars, pedestrians, and cyclists, and static objects like crosswalks, road barriers, and stop lines.

In this dissertation, we aim to figure out better ways for computers to understand their surroundings in the 3D object detection task and map segmentation task. The 3D object detection task automatically spots objects in 3D (like cars or cyclists) and the map segmentation task automatically …


Better Pay Attention Whilst Fuzzing, Shunkai Zhu, Jingyi Wang, Jun Sun, Jie Yang, Xingwei Lin, Liyi Zhang, Peng Cheng Dec 2023

Better Pay Attention Whilst Fuzzing, Shunkai Zhu, Jingyi Wang, Jun Sun, Jie Yang, Xingwei Lin, Liyi Zhang, Peng Cheng

Research Collection School Of Computing and Information Systems

Fuzzing is one of the prevailing methods for vulnerability detection. However, even state-of-the-art fuzzing methods become ineffective after some period of time, i.e., the coverage hardly improves as existing methods are ineffective to focus the attention of fuzzing on covering the hard-to-trigger program paths. In other words, they cannot generate inputs that can break the bottleneck due to the fundamental difficulty in capturing the complex relations between the test inputs and program coverage. In particular, existing fuzzers suffer from the following main limitations: 1) lacking an overall analysis of the program to identify the most “rewarding” seeds, and 2) lacking …


Understanding The Impact Of Trade Policy Effect Uncertainty On Firm-Level Innovation Investment: A Deep Learning Approach, Daniel Chang, Nan Hu, Peng Liang, Morgan Swink Dec 2023

Understanding The Impact Of Trade Policy Effect Uncertainty On Firm-Level Innovation Investment: A Deep Learning Approach, Daniel Chang, Nan Hu, Peng Liang, Morgan Swink

Research Collection School Of Computing and Information Systems

Integrating the real options perspective and resource dependence theory, this study examines how firms adjust their innovation investments to trade policy effect uncertainty (TPEU), a less studied type of firm specific, perceived environmental uncertainty in which managers have difficulty predicting how potential policy changes will affect business operations. To develop a text-based, context-dependent, time-varying measure of firm-level perceived TPEU, we apply Bidirectional Encoder Representations from Transformers (BERT), a state-of-the-art deep learning approach. We apply BERT to analyze the texts of mandatory Management Discussion and Analysis (MD&A) sections of annual reports for a sample of 22,669 firm-year observations from 3,181 unique …


A Comparative Study Of Yolo Models And A Transformer-Based Yolov5 Model For Mass Detection In Mammograms, Damla Coşkun, Dervi̇ş Karaboğa, Alper Baştürk, Bahri̇ye Akay, Özkan Ufuk Nalbantoğlu, Serap Doğan, İshak Paçal, Meryem Altin Karagöz Nov 2023

A Comparative Study Of Yolo Models And A Transformer-Based Yolov5 Model For Mass Detection In Mammograms, Damla Coşkun, Dervi̇ş Karaboğa, Alper Baştürk, Bahri̇ye Akay, Özkan Ufuk Nalbantoğlu, Serap Doğan, İshak Paçal, Meryem Altin Karagöz

Turkish Journal of Electrical Engineering and Computer Sciences

Breast cancer is a prevalent form of cancer across the globe, and if it is not diagnosed at an early stage it can be life-threatening. In order to aid in its diagnosis, detection, and classification, computer-aided detection (CAD) systems are employed. You Only Look Once (YOLO)-based CAD algorithms have become very popular owing to their highly accurate results for object detection tasks in recent years. Therefore, the most popular YOLO models are implemented to compare the performance in mass detection with various experiments on the INbreast dataset. In addition, a YOLO model with an integrated Swin Transformer in its backbone …


A Systematic Collection Of Medical Image Datasets For Deep Learning, Johann Li, Guangming Zhu, Cong Hua, Mingtao Feng, Basheer Bennamoun, Ping Li, Xiaoyuan Lu, Juan Song, Peiyi Shen, Xu Xu, Lin Mei, Liang Zhang, Syed A. A. Shah, Mohammed Bennamoun Nov 2023

A Systematic Collection Of Medical Image Datasets For Deep Learning, Johann Li, Guangming Zhu, Cong Hua, Mingtao Feng, Basheer Bennamoun, Ping Li, Xiaoyuan Lu, Juan Song, Peiyi Shen, Xu Xu, Lin Mei, Liang Zhang, Syed A. A. Shah, Mohammed Bennamoun

Research outputs 2022 to 2026

The astounding success made by artificial intelligence in healthcare and other fields proves that it can achieve human-like performance. However, success always comes with challenges. Deep learning algorithms are data dependent and require large datasets for training. Many junior researchers face a lack of data for a variety of reasons. Medical image acquisition, annotation, and analysis are costly, and their usage is constrained by ethical restrictions. They also require several other resources, such as professional equipment and expertise. That makes it difficult for novice and non-medical researchers to have access to medical data. Thus, as comprehensively as possible, this article …


Multi-View Information Fusion Using Multi-View Variational Autoencoder To Predict Proximal Femoral Fracture Load, Chen Zhao, Joyce H. Keyak, Xuewei Cao, Qiuying Sha, Li Wu, Zhe Luo, Lan Juan Zhao, Qing Tian, Michael Serou, Chuan Qiu, Kuan Jui Su, Hui Shen, Hong Wen Deng, Weihua Zhou Nov 2023

Multi-View Information Fusion Using Multi-View Variational Autoencoder To Predict Proximal Femoral Fracture Load, Chen Zhao, Joyce H. Keyak, Xuewei Cao, Qiuying Sha, Li Wu, Zhe Luo, Lan Juan Zhao, Qing Tian, Michael Serou, Chuan Qiu, Kuan Jui Su, Hui Shen, Hong Wen Deng, Weihua Zhou

Michigan Tech Publications, Part 2

Background: Hip fracture occurs when an applied force exceeds the force that the proximal femur can support (the fracture load or “strength”) and can have devastating consequences with poor functional outcomes. Proximal femoral strengths for specific loading conditions can be computed by subject-specific finite element analysis (FEA) using quantitative computerized tomography (QCT) images. However, the radiation and availability of QCT limit its clinical usability. Alternative low-dose and widely available measurements, such as dual energy X-ray absorptiometry (DXA) and genetic factors, would be preferable for bone strength assessment. The aim of this paper is to design a deep learning-based model to …


Uavs And Deep Neural Networks: An Alternative Approach To Monitoring Waterfowl At The Site Level, Zachary J. Loken Nov 2023

Uavs And Deep Neural Networks: An Alternative Approach To Monitoring Waterfowl At The Site Level, Zachary J. Loken

LSU Master's Theses

Understanding how waterfowl respond to habitat restoration and management activities is crucial for evaluating and refining conservation delivery programs. However, site-specific waterfowl monitoring is challenging, especially in heavily forested systems such as the Mississippi Alluvial Valley (MAV)—a primary wintering region for ducks in North America. I hypothesized that using uncrewed aerial vehicles (UAVs) coupled with deep learning-based methods for object detection would provide an efficient and effective means for surveying non-breeding waterfowl on difficult-to-access restored wetland sites. Accordingly, during the winters of 2021 and 2022, I surveyed wetland restoration easements in the MAV using a UAV equipped with a dual …


Optimized Uncertainty Estimation For Vision Transformers: Enhancing Adversarial Robustness And Performance Using Selective Classification, Erik Pautsch, John Li, Silvio Rizzi, George K. Thiruvathukal, Maria Pantoja Nov 2023

Optimized Uncertainty Estimation For Vision Transformers: Enhancing Adversarial Robustness And Performance Using Selective Classification, Erik Pautsch, John Li, Silvio Rizzi, George K. Thiruvathukal, Maria Pantoja

Computer Science: Faculty Publications and Other Works

Deep Learning models often exhibit undue confidence when encountering out-of-distribution (OOD) inputs, misclassifying with high confidence. The ideal outcome, in these cases, would be an "I do not know" verdict. We enhance the trustworthiness of our models through selective classification, allowing the model to abstain from making predictions when facing uncertainty. Rather than a singular prediction, the model offers a prediction distribution, enabling users to gauge the model’s trustworthiness and determine the need for human intervention. We assess uncertainty in two baseline models: a Convolutional Neural Network (CNN) and a Vision Transformer (ViT). By leveraging these uncertainty values, we minimize …