Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 100

Full-Text Articles in Physical Sciences and Mathematics

Catnet: Cross-Modal Fusion For Audio-Visual Speech Recognition, Xingmei Wang, Jianchen Mi, Boquan Li, Yixu Zhao, Jiaxiang Meng Feb 2024

Catnet: Cross-Modal Fusion For Audio-Visual Speech Recognition, Xingmei Wang, Jianchen Mi, Boquan Li, Yixu Zhao, Jiaxiang Meng

Research Collection School Of Computing and Information Systems

Automatic speech recognition (ASR) is a typical pattern recognition technology that converts human speeches into texts. With the aid of advanced deep learning models, the performance of speech recognition is significantly improved. Especially, the emerging Audio–Visual Speech Recognition (AVSR) methods achieve satisfactory performance by combining audio-modal and visual-modal information. However, various complex environments, especially noises, limit the effectiveness of existing methods. In response to the noisy problem, in this paper, we propose a novel cross-modal audio–visual speech recognition model, named CATNet. First, we devise a cross-modal bidirectional fusion model to analyze the close relationship between audio and visual modalities. Second, …


Distxplore: Distribution-Guided Testing For Evaluating And Enhancing Deep Learning Systems, Longtian Wang, Xiaofei Xie, Xiaoning Du, Meng Tian, Qing Guo, Zheng Yang, Chao Shen Dec 2023

Distxplore: Distribution-Guided Testing For Evaluating And Enhancing Deep Learning Systems, Longtian Wang, Xiaofei Xie, Xiaoning Du, Meng Tian, Qing Guo, Zheng Yang, Chao Shen

Research Collection School Of Computing and Information Systems

Deep learning (DL) models are trained on sampled data, where the distribution of training data differs from that of real-world data (i.e., the distribution shift), which reduces the model's robustness. Various testing techniques have been proposed, including distribution-unaware and distribution-aware methods. However, distribution-unaware testing lacks effectiveness by not explicitly considering the distribution of test cases and may generate redundant errors (within same distribution). Distribution-aware testing techniques primarily focus on generating test cases that follow the training distribution, missing out-of-distribution data that may also be valid and should be considered in the testing process. In this paper, we propose a novel …


Understanding The Impact Of Trade Policy Effect Uncertainty On Firm-Level Innovation Investment: A Deep Learning Approach, Daniel Chang, Nan Hu, Peng Liang, Morgan Swink Dec 2023

Understanding The Impact Of Trade Policy Effect Uncertainty On Firm-Level Innovation Investment: A Deep Learning Approach, Daniel Chang, Nan Hu, Peng Liang, Morgan Swink

Research Collection School Of Computing and Information Systems

Integrating the real options perspective and resource dependence theory, this study examines how firms adjust their innovation investments to trade policy effect uncertainty (TPEU), a less studied type of firm specific, perceived environmental uncertainty in which managers have difficulty predicting how potential policy changes will affect business operations. To develop a text-based, context-dependent, time-varying measure of firm-level perceived TPEU, we apply Bidirectional Encoder Representations from Transformers (BERT), a state-of-the-art deep learning approach. We apply BERT to analyze the texts of mandatory Management Discussion and Analysis (MD&A) sections of annual reports for a sample of 22,669 firm-year observations from 3,181 unique …


Better Pay Attention Whilst Fuzzing, Shunkai Zhu, Jingyi Wang, Jun Sun, Jie Yang, Xingwei Lin, Liyi Zhang, Peng Cheng Dec 2023

Better Pay Attention Whilst Fuzzing, Shunkai Zhu, Jingyi Wang, Jun Sun, Jie Yang, Xingwei Lin, Liyi Zhang, Peng Cheng

Research Collection School Of Computing and Information Systems

Fuzzing is one of the prevailing methods for vulnerability detection. However, even state-of-the-art fuzzing methods become ineffective after some period of time, i.e., the coverage hardly improves as existing methods are ineffective to focus the attention of fuzzing on covering the hard-to-trigger program paths. In other words, they cannot generate inputs that can break the bottleneck due to the fundamental difficulty in capturing the complex relations between the test inputs and program coverage. In particular, existing fuzzers suffer from the following main limitations: 1) lacking an overall analysis of the program to identify the most “rewarding” seeds, and 2) lacking …


Understanding The Impact Of Trade Policy Effect Uncertainty On Firm-Level Innovation Investment: A Deep Learning Approach, Daniel. Chen, Nan Hu, Peng. Liang, Morgan. Swink Nov 2023

Understanding The Impact Of Trade Policy Effect Uncertainty On Firm-Level Innovation Investment: A Deep Learning Approach, Daniel. Chen, Nan Hu, Peng. Liang, Morgan. Swink

Research Collection School Of Computing and Information Systems

Integrating the real options perspective and resource dependence theory, this study examines how firms adjust their innovation investments to trade policy effect uncertainty (TPEU), a less studied type of firm specific, perceived environmental uncertainty in which managers have difficulty predicting how potential policy changes will affect business operations. To develop a text-based, context-dependent, time-varying measure of firm-level perceived TPEU, we apply Bidirectional Encoder Representations from Transformers (BERT), a state-of-the-art deep learning approach. We apply BERT to analyze the texts of mandatory Management Discussion and Analysis (MD&A) sections of annual reports for a sample of 22,669 firm-year observations from 3,181 unique …


On The Sustainability Of Deep Learning Projects: Maintainers' Perspective, Junxiao Han, Jiakun Liu, David Lo, Chen Zhi, Yishan Chen, Shuiguang Deng Nov 2023

On The Sustainability Of Deep Learning Projects: Maintainers' Perspective, Junxiao Han, Jiakun Liu, David Lo, Chen Zhi, Yishan Chen, Shuiguang Deng

Research Collection School Of Computing and Information Systems

Deep learning (DL) techniques have grown in leaps and bounds in both academia and industry over the past few years. Despite the growth of DL projects, there has been little study on how DL projects evolve, whether maintainers in this domain encounter a dramatic increase in workload and whether or not existing maintainers can guarantee the sustained development of projects. To address this gap, we perform an empirical study to investigate the sustainability of DL projects, understand maintainers' workloads and workloads growth in DL projects, and compare them with traditional open-source software (OSS) projects. In this regard, we first investigate …


Arduinoprog: Towards Automating Arduino Programming, Imam Nur Bani Yusuf, Diyanah Binte Abdul Jamal, Lingxiao Jiang Sep 2023

Arduinoprog: Towards Automating Arduino Programming, Imam Nur Bani Yusuf, Diyanah Binte Abdul Jamal, Lingxiao Jiang

Research Collection School Of Computing and Information Systems

Writing code for Arduino poses unique challenges. A developer 1) needs hardware-specific knowledge about the interface configuration between the Arduino controller and the I/Ohardware, 2) identifies a suitable driver library for the I/O hardware, and 3) follows certain usage patterns of the driver library in order to use them properly. In this work, based on a study of real-world user queries posted in the Arduino forum, we propose ArduinoProg to address such challenges. ArduinoProg consists of three components, i.e., Library Retriever, Configuration Classifier, and Pattern Generator. Given a query, Library Retriever retrieves library names relevant to the I/O hardware identified …


Experimental Comparison Of Features, Analyses, And Classifiers For Android Malware Detection, Lwin Khin Shar, Biniam Fisseha Demissie, Mariano Ceccato, Naing Tun Yan, David Lo, Lingxiao Jiang, Christoph Bienert Sep 2023

Experimental Comparison Of Features, Analyses, And Classifiers For Android Malware Detection, Lwin Khin Shar, Biniam Fisseha Demissie, Mariano Ceccato, Naing Tun Yan, David Lo, Lingxiao Jiang, Christoph Bienert

Research Collection School Of Computing and Information Systems

Android malware detection has been an active area of research. In the past decade, several machine learning-based approaches based on different types of features that may characterize Android malware behaviors have been proposed. The usually-analyzed features include API usages and sequences at various abstraction levels (e.g., class and package), extracted using static or dynamic analysis. Additionally, features that characterize permission uses, native API calls and reflection have also been analyzed. Initial works used conventional classifiers such as Random Forest to learn on those features. In recent years, deep learning-based classifiers such as Recurrent Neural Network have been explored. Considering various …


Rosas: Deep Semi-Supervised Anomaly Detection With Contamination-Resilient Continuous Supervision, Hongzuo Xu, Yijie Wang, Guansong Pang, Songlei Jian, Ning Liu, Yongjun Wang Sep 2023

Rosas: Deep Semi-Supervised Anomaly Detection With Contamination-Resilient Continuous Supervision, Hongzuo Xu, Yijie Wang, Guansong Pang, Songlei Jian, Ning Liu, Yongjun Wang

Research Collection School Of Computing and Information Systems

Semi-supervised anomaly detection methods leverage a few anomaly examples to yield drastically improved performance compared to unsupervised models. However, they still suffer from two limitations: 1) unlabeled anomalies (i.e., anomaly contamination) may mislead the learning process when all the unlabeled data are employed as inliers for model training; 2) only discrete supervision information (such as binary or ordinal data labels) is exploited, which leads to suboptimal learning of anomaly scores that essentially take on a continuous distribution. Therefore, this paper proposes a novel semi-supervised anomaly detection method, which devises contamination-resilient continuous supervisory signals. Specifically, we propose a mass interpolation method …


Multi-Granularity Detector For Vulnerability Fixes, Truong Giang Nguyen, Cong, Thanh Le, Hong Jin Kang, Ratnadira Widyasari, Chengran Yang, Zhipeng Zhao, Bowen Xu, Jiayuan Zhou, Xin Xia, Ahmed E. Hassan, David Lo, David Lo Aug 2023

Multi-Granularity Detector For Vulnerability Fixes, Truong Giang Nguyen, Cong, Thanh Le, Hong Jin Kang, Ratnadira Widyasari, Chengran Yang, Zhipeng Zhao, Bowen Xu, Jiayuan Zhou, Xin Xia, Ahmed E. Hassan, David Lo, David Lo

Research Collection School Of Computing and Information Systems

With the increasing reliance on Open Source Software, users are exposed to third-party library vulnerabilities. Software Composition Analysis (SCA) tools have been created to alert users of such vulnerabilities. SCA requires the identification of vulnerability-fixing commits. Prior works have proposed methods that can automatically identify such vulnerability-fixing commits. However, identifying such commits is highly challenging, as only a very small minority of commits are vulnerability fixing. Moreover, code changes can be noisy and difficult to analyze. We observe that noise can occur at different levels of detail, making it challenging to detect vulnerability fixes accurately. To address these challenges and …


Learning Deep Time-Index Models For Time Series Forecasting, Jiale Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, Steven Hoi Jul 2023

Learning Deep Time-Index Models For Time Series Forecasting, Jiale Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, Steven Hoi

Research Collection School Of Computing and Information Systems

Deep learning has been actively applied to time series forecasting, leading to a deluge of new methods, belonging to the class of historicalvalue models. Yet, despite the attractive properties of time-index models, such as being able to model the continuous nature of underlying time series dynamics, little attention has been given to them. Indeed, while naive deep timeindex models are far more expressive than the manually predefined function representations of classical time-index models, they are inadequate for forecasting, being unable to generalize to unseen time steps due to the lack of inductive bias. In this paper, we propose DeepTime, a …


Automating Arduino Programming: From Hardware Setups To Sample Source Code Generation, Imam Nur Bani Yusuf, Diyanah Binte Abdul Jamal, Lingxiao Jiang May 2023

Automating Arduino Programming: From Hardware Setups To Sample Source Code Generation, Imam Nur Bani Yusuf, Diyanah Binte Abdul Jamal, Lingxiao Jiang

Research Collection School Of Computing and Information Systems

An embedded system is a system consisting of software code, controller hardware, and I/O (Input/Output) hardware that performs a specific task. Developing an embedded system presents several challenges. First, the development often involves configuring hardware that requires domain-specific knowledge. Second, the library for the hardware may have API usage patterns that must be followed. To overcome such challenges, we propose a framework called ArduinoProg towards the automatic generation of Arduino applications. ArduinoProg takes a natural language query as input and outputs the configuration and API usage pattern for the hardware described in the query. Motivated by our findings on the …


Learning-Based Stock Trending Prediction By Incorporating Technical Indicators And Social Media Sentiment, Zhaoxia Wang, Zhenda Hu, Fang Li, Seng-Beng Ho, Erik Cambria Mar 2023

Learning-Based Stock Trending Prediction By Incorporating Technical Indicators And Social Media Sentiment, Zhaoxia Wang, Zhenda Hu, Fang Li, Seng-Beng Ho, Erik Cambria

Research Collection School Of Computing and Information Systems

Stock trending prediction is a challenging task due to its dynamic and nonlinear characteristics. With the development of social platform and artificial intelligence (AI), incorporating timely news and social media information into stock trending models becomes possible. However, most of the existing works focus on classification or regression problems when predicting stock market trending without fully considering the effects of different influence factors in different phases. To address this gap, this research solves stock trending prediction problem utilizing both technical indicators and sentiments of the social media text as influence factors in different situations. A 3-phase hybrid model is proposed …


Causal Interventional Training For Image Recognition, Wei Qin, Hanwang Zhang, Richang Hong, Ee-Peng Lim, Qianru Sun Jan 2023

Causal Interventional Training For Image Recognition, Wei Qin, Hanwang Zhang, Richang Hong, Ee-Peng Lim, Qianru Sun

Research Collection School Of Computing and Information Systems

Deep learning models often fit undesired dataset bias in training. In this paper, we formulate the bias using causal inference, which helps us uncover the ever-elusive causalities among the key factors in training, and thus pursue the desired causal effect without the bias. We start from revisiting the process of building a visual recognition system, and then propose a structural causal model (SCM) for the key variables involved in dataset collection and recognition model: object, common sense, bias, context, and label prediction. Based on the SCM, one can observe that there are “good” and “bad” biases. Intuitively, in the image …


Learning Large Neighborhood Search For Vehicle Routing In Airport Ground Handling, Jianan Zhou, Yaoxin Wu, Zhiguang Cao, Wen Song, Jie Zhang, Zhenghua Chen Jan 2023

Learning Large Neighborhood Search For Vehicle Routing In Airport Ground Handling, Jianan Zhou, Yaoxin Wu, Zhiguang Cao, Wen Song, Jie Zhang, Zhenghua Chen

Research Collection School Of Computing and Information Systems

Dispatching vehicle fleets to serve flights is a key task in airport ground handling (AGH). Due to the notable growth of flights, it is challenging to simultaneously schedule multiple types of operations (services) for a large number of flights, where each type of operation is performed by one specific vehicle fleet. To tackle this issue, we first represent the operation scheduling as a complex vehicle routing problem and formulate it as a mixed integer linear programming (MILP) model. Then given the graph representation of the MILP model, we propose a learning assisted large neighborhood search (LNS) method using data generated …


Quote: Quality-Oriented Testing For Deep Learning Systems, Jialuo Chen, Jingyi Wang, Xingjun Ma, Youcheng Sun, Jun Sun, Peixin Zhang, Peng Cheng Dec 2022

Quote: Quality-Oriented Testing For Deep Learning Systems, Jialuo Chen, Jingyi Wang, Xingjun Ma, Youcheng Sun, Jun Sun, Peixin Zhang, Peng Cheng

Research Collection School Of Computing and Information Systems

Recently, there has been a significant growth of interest in applying software engineering techniques for the quality assurance of deep learning (DL) systems. One popular direction is deep learning testing, i.e., given a property of test, defects of DL systems are found either by fuzzing or guided search with the help of certain testing metrics. However, recent studies have revealed that the neuron coverage metrics, commonly used by most existing DL testing approaches, are not necessarily correlated with model quality (e.g., robustness, the most studied model property), and are also not an effective measurement on the confidence of the model …


Dronlomaly: Runtime Detection Of Anomalous Drone Behaviors Via Log Analysis And Deep Learning, Lwin Khin Shar, Wei Minn, Nguyen Binh Duong Ta, Jianli Fan, Lingxiao Jiang, Daniel Wai Kiat Lim Dec 2022

Dronlomaly: Runtime Detection Of Anomalous Drone Behaviors Via Log Analysis And Deep Learning, Lwin Khin Shar, Wei Minn, Nguyen Binh Duong Ta, Jianli Fan, Lingxiao Jiang, Daniel Wai Kiat Lim

Research Collection School Of Computing and Information Systems

Drones are increasingly popular and getting used in a variety of missions such as area surveillance, pipeline inspection, cinematography, etc. While the drone is conducting a mission, anomalies such as sensor fault, actuator fault, configuration errors, bugs in controller program, remote cyber- attack, etc., may affect the drone’s physical stability and cause serious safety violations such as crashing into the public. During a flight mission, drones typically log flight status and state units such as GPS coordinates, actuator outputs, accelerator readings, gyroscopic readings, etc. These log data may reflect the above-mentioned anomalies. In this paper, we propose a novel, deep …


Continual Learning With Neural Networks, Pham Hong Quang Nov 2022

Continual Learning With Neural Networks, Pham Hong Quang

Dissertations and Theses Collection (Open Access)

Recent years have witnessed tremendous successes of artificial neural networks in many applications, ranging from visual perception to language understanding. However, such achievements have been mostly demonstrated on a large amount of labeled data that is static throughout learning. In contrast, real-world environments are always evolving, where new patterns emerge and the older ones become inactive before reappearing in the future. In this respect, continual learning aims to achieve a higher level of intelligence by learning online on a data stream of several tasks. As it turns out, neural networks are not equipped to learn continually: they lack the ability …


Vulcurator: A Vulnerability-Fixing Commit Detector, Truong Giang Nguyen, Cong Thanh Le, Hong Jin Kang, Xuan-Bach D. Le, David Lo Nov 2022

Vulcurator: A Vulnerability-Fixing Commit Detector, Truong Giang Nguyen, Cong Thanh Le, Hong Jin Kang, Xuan-Bach D. Le, David Lo

Research Collection School Of Computing and Information Systems

Open-source software (OSS) vulnerability management process is important nowadays, as the number of discovered OSS vulnerabilities is increasing over time. Monitoring vulnerability-fixing commits is a part of the standard process to prevent vulnerability exploitation. Manually detecting vulnerability-fixing commits is, however, time-consuming due to the possibly large number of commits to review. Recently, many techniques have been proposed to automatically detect vulnerability-fixing commits using machine learning. These solutions either: (1) did not use deep learning, or (2) use deep learning on only limited sources of information. This paper proposes VulCurator, a tool that leverages deep learning on richer sources of information, …


Recipegen++: An Automated Trigger Action Programs Generator, Imam Nur Bani Yusuf, Diyanah Abdul Jamal, Lingxiao Jiang, David Lo Nov 2022

Recipegen++: An Automated Trigger Action Programs Generator, Imam Nur Bani Yusuf, Diyanah Abdul Jamal, Lingxiao Jiang, David Lo

Research Collection School Of Computing and Information Systems

Trigger Action Programs (TAPs) are event-driven rules that allow users to automate smart-devices and internet services. Users can write TAPs by specifying triggers and actions from a set of predefined channels and functions. Despite its simplicity, composing TAPs can still be challenging for users due to the enormous search space of available triggers and actions. The growing popularity of TAPs is followed by the increasing number of supported devices and services, resulting in a huge number of possible combinations between triggers and actions. Motivated by such a fact, we improve our prior work and propose RecipeGen++, a deep-learning-based approach that …


Photovoltaic Cells For Energy Harvesting And Indoor Positioning, Hamada Rizk, Dong Ma, Mahbub Hassan, Moustafa Youssef Nov 2022

Photovoltaic Cells For Energy Harvesting And Indoor Positioning, Hamada Rizk, Dong Ma, Mahbub Hassan, Moustafa Youssef

Research Collection School Of Computing and Information Systems

We propose SoLoc, a lightweight probabilistic fingerprinting-based technique for energy-free device-free indoor localization. The system harnesses photovoltaic currents harvested by the photovoltaic cells in smart environments for simultaneously powering digital devices and user positioning. The basic principle is that the location of the human interferes with the lighting received by the photovoltaic cells, thus producing a location fingerprint on the generated photocurrents. To ensure resilience to noisy measurements, SoLoc constructs probability distributions as a photovoltaic fingerprint at each location. Then, we employ a probabilistic graphical model for estimating the user location in the continuous space. Results show that SoLoc can …


Transrepair: Context-Aware Program Repair For Compilation Errors, Xueyang Li, Shangqing Liu, Ruitao Feng, Guozhu Meng, Xiaofei Xie, Kai Chen, Yang Liu Oct 2022

Transrepair: Context-Aware Program Repair For Compilation Errors, Xueyang Li, Shangqing Liu, Ruitao Feng, Guozhu Meng, Xiaofei Xie, Kai Chen, Yang Liu

Research Collection School Of Computing and Information Systems

Automatically fixing compilation errors can greatly raise the productivity of software development, by guiding the novice or AI programmers to write and debug code. Recently, learning-based program repair has gained extensive attention and became the stateof-the-art in practice. But it still leaves plenty of space for improvement. In this paper, we propose an end-to-end solution TransRepair to locate the error lines and create the correct substitute for a C program simultaneously. Superior to the counterpart, our approach takes into account the context of erroneous code and diagnostic compilation feedback. Then we devise a Transformer-based neural network to learn the ways …


Deep Learning-Based Text Recognition Of Agricultural Regulatory Document, Hua Leong Fwa, Farn Haur Chan Sep 2022

Deep Learning-Based Text Recognition Of Agricultural Regulatory Document, Hua Leong Fwa, Farn Haur Chan

Research Collection School Of Computing and Information Systems

In this study, an OCR system based on deep learning techniques was deployed to digitize scanned agricultural regulatory documents comprising of certificates and labels. Recognition of the certificates and labels is challenging as they are scanned images of the hard copy form and the layout and size of the text as well as the languages vary between the various countries (due to diverse regulatory requirements). We evaluated and compared between various state-of-the-art deep learningbased text detection and recognition model as well as a packaged OCR library – Tesseract. We then adopted a two-stage approach comprising of text detection using Character …


Deep Learning For Anomaly Detection, Guansong Pang, Charu Aggarwal, Chunhua Shen, Nicu Sebe Jun 2022

Deep Learning For Anomaly Detection, Guansong Pang, Charu Aggarwal, Chunhua Shen, Nicu Sebe

Research Collection School Of Computing and Information Systems

A nomaly detection aims at identifying data points which are rare or significantly different from the majority of data points. Many techniques are explored to build highly efficient and effective anomaly detection systems, but they are confronted with many difficulties when dealing with complex data, such as failing to capture intricate feature interactions or extract good feature representations. Deep-learning techniques have shown very promising performance in tackling different types of complex data in a broad range of tasks/problems, including anomaly detection. To address this new trend, we organized this Special Issue on Deep Learning for Anomaly Detection to cover the …


Deep Depression Prediction On Longitudinal Data Via Joint Anomaly Ranking And Classification, Guansong Pang, Ngoc Thien Anh Pham, Emma Baker, Rebecca Bentley, Anton Van Den Hengel May 2022

Deep Depression Prediction On Longitudinal Data Via Joint Anomaly Ranking And Classification, Guansong Pang, Ngoc Thien Anh Pham, Emma Baker, Rebecca Bentley, Anton Van Den Hengel

Research Collection School Of Computing and Information Systems

A wide variety of methods have been developed for identifying depression, but they focus primarily on measuring the degree to which individuals are suffering from depression currently. In this work we explore the possibility of predicting future depression using machine learning applied to longitudinal socio-demographic data. In doing so we show that data such as housing status, and the details of the family environment, can provide cues for predicting future psychiatric disorders. To this end, we introduce a novel deep multi-task recurrent neural network to learn time-dependent depression cues. The depression prediction task is jointly optimized with two auxiliary anomaly …


Simple Or Complex? Together For A More Accurate Just-In-Time Defect Predictor, Xin Zhou, Donggyun Han, David Lo May 2022

Simple Or Complex? Together For A More Accurate Just-In-Time Defect Predictor, Xin Zhou, Donggyun Han, David Lo

Research Collection School Of Computing and Information Systems

Just-In-Time (JIT) defect prediction aims to automatically predict whether a commit is defective or not, and has been widely studied in recent years. In general, most studies can be classified into two categories: 1) simple models using traditional machine learning classifiers with hand-crafted features, and 2) complex models using deep learning techniques to automatically extract features. Hand-crafted features used by simple models are based on expert knowledge but may not fully represent the semantic meaning of the commits. On the other hand, deep learning-based features used by complex models represent the semantic meaning of commits but may not reflect useful …


Indoor Localization Using Solar Cells, Hamada Rizk, Dong Ma, Mahbub Hassan, Moustafa Youssef May 2022

Indoor Localization Using Solar Cells, Hamada Rizk, Dong Ma, Mahbub Hassan, Moustafa Youssef

Research Collection School Of Computing and Information Systems

The development of the Internet of Things (IoT) opens the doors for innovative solutions in indoor positioning systems. Recently, light-based positioning has attracted much attention due to the dense and pervasive nature of light sources (e.g., Light-emitting Diode lighting) in indoor environments. Nevertheless, most existing solutions necessitate carrying a high-end phone at hand in a specific orientation to detect the light intensity with the phone's light sensing capability (i.e., light sensor or camera). This limits the ease of deployment of these solutions and leads to drainage of the phone battery. We propose PVDeepLoc, a device-free light-based indoor localization system that …


Comai: Enabling Lightweight, Collaborative Intelligence By Retrofitting Vision Dnns, Kasthuri Jayarajah, Dhanuja Wanniarachchige, Tarek Abdelzaher, Archan Misra Apr 2022

Comai: Enabling Lightweight, Collaborative Intelligence By Retrofitting Vision Dnns, Kasthuri Jayarajah, Dhanuja Wanniarachchige, Tarek Abdelzaher, Archan Misra

Research Collection School Of Computing and Information Systems

While Deep Neural Network (DNN) models have transformed machine vision capabilities, their extremely high computational complexity and model sizes present a formidable deployment roadblock for AIoT applications. We show that the complexity-vs-accuracy-vs-communication tradeoffs for such DNN models can be significantly addressed via a novel, lightweight form of “collaborative machine intelligence” that requires only runtime changes to the inference process. In our proposed approach, called ComAI, the DNN pipelines of different vision sensors share intermediate processing state with one another, effectively providing hints about objects located within their mutually-overlapping Field-of-Views (FoVs). CoMAI uses two novel techniques: (a) a secondary shallow ML …


Heterogeneous Attentions For Solving Pickup And Delivery Problem Via Deep Reinforcement Learning, Jingwen Li, Liang Xin, Zhiguang Cao, Andrew Lim, Wen Song, Jie Zhang Mar 2022

Heterogeneous Attentions For Solving Pickup And Delivery Problem Via Deep Reinforcement Learning, Jingwen Li, Liang Xin, Zhiguang Cao, Andrew Lim, Wen Song, Jie Zhang

Research Collection School Of Computing and Information Systems

Recently, there is an emerging trend to apply deep reinforcement learning to solve the vehicle routing problem (VRP), where a learnt policy governs the selection of next node for visiting. However, existing methods could not handle well the pairing and precedence relationships in the pickup and delivery problem (PDP), which is a representative variant of VRP. To address this challenging issue, we leverage a novel neural network integrated with a heterogeneous attention mechanism to empower the policy in deep reinforcement learning to automatically select the nodes. In particular, the heterogeneous attention mechanism specifically prescribes attentions for each role of the …


Deep Learning For Anomaly Detection: A Review, Guansong Pang, Chunhua Shen, Longbing Cao, Anton Van Den Hengel Mar 2022

Deep Learning For Anomaly Detection: A Review, Guansong Pang, Chunhua Shen, Longbing Cao, Anton Van Den Hengel

Research Collection School Of Computing and Information Systems

Anomaly detection, a.k.a. outlier detection or novelty detection, has been a lasting yet active research area in various research communities for several decades. There are still some unique problem complexities and challenges that require advanced approaches. In recent years, deep learning enabled anomaly detection, i.e., deep anomaly detection, has emerged as a critical direction. This article surveys the research of deep anomaly detection with a comprehensive taxonomy, covering advancements in 3 high-level categories and 11 fine-grained categories of the methods. We review their key intuitions, objective functions, underlying assumptions, advantages, and disadvantages and discuss how they address the aforementioned challenges. …