Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Chapman University

Discipline
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 31 - 60 of 1316

Full-Text Articles in Physical Sciences and Mathematics

Yearly Population Data At Census Tract Level Revealed That More People Are Now Living In Highly Fire-Prone Zones In California, Usa, Slade Lazeweski, Shenyue Jia, Jessica E. Viner, Wesley Ho, Brian Hoover, Seung Hee Kim, Menas C. Kafatos Mar 2024

Yearly Population Data At Census Tract Level Revealed That More People Are Now Living In Highly Fire-Prone Zones In California, Usa, Slade Lazeweski, Shenyue Jia, Jessica E. Viner, Wesley Ho, Brian Hoover, Seung Hee Kim, Menas C. Kafatos

Institute for ECHO Articles and Research

In California (CA), the wildland-urban interface (WUI) faces escalating challenges due to surging population and real estate development. This study evaluates communities along CA's WUI that have witnessed substantial population growth from 2010 to 2021, utilizing demographic data and the 2020 WUI boundaries by the University of Wisconsin-Madison SILVIS Lab. Employing the Mann-Kendall test, we analyze yearly population trends for each census tract along the CA WUI and assess their significance. House ownership, affordability, and wildfire risk are examined as potential drivers of this demographic shift. Our findings indicate that 12.7% of CA's total population now resides in census tracts …


Instability And Quantization In Quantum Hydrodynamics, Yakir Aharonov, Tomer Shushi Mar 2024

Instability And Quantization In Quantum Hydrodynamics, Yakir Aharonov, Tomer Shushi

Mathematics, Physics, and Computer Science Faculty Articles and Research

We show how the quantum hydrodynamical formulation of quantum mechanics converts the nonlocality in the standard wave-like description of quantum systems by an instability of the quantum system, which opens the door to a new way for studying quantum systems based on known methodologies for studying the stability of fluids. As a second result, we show how the Madelung equations describe quantized energies without any external quantization conditions.


A Bayesian Approach For Lifetime Modeling And Prediction With Multi-Type Group-Shared Missing Covariates, Hao Zeng, Xuxue Sun, Kuo Wang, Yuxin Wen, Wujun Si, Mingyang Li Feb 2024

A Bayesian Approach For Lifetime Modeling And Prediction With Multi-Type Group-Shared Missing Covariates, Hao Zeng, Xuxue Sun, Kuo Wang, Yuxin Wen, Wujun Si, Mingyang Li

Engineering Faculty Articles and Research

In the field of reliability engineering, covariate information shared among product units within a specific group (e.g., a manufacturing batch, an operating region), such as operating conditions and design settings, exerts substantial influence on product lifetime prediction. The covariates shared within each group may be missing due to sensing limitations and data privacy issues. The missing covariates shared within the same group commonly encompass a variety of attribute types, such as discrete types, continuous types, or mixed types. Existing studies have mainly considered single-type missing covariates at the individual level, and they have failed to thoroughly investigate the influence of …


Toward A Coordinated Understanding Of Hydro-Biogeochemical Root Functions In Tropical Forests For Application In Vegetation Models, Daniela F. Cusack, Bradley Christoffersen, Chris M. Smith-Martin, Kelly M. Andersen, Amanda L. Cordeiro, Katrin Fleischer, S. Joseph Wright, Nathaly R. Guerrero-Ramírez, Laynara F. Lugli, Lindsay A. Mcculloch, Mareli Sanchez-Julia, Sarah A. Batterman, Caroline Dallstream, Claire Fortunel, Laura Toro, Lucia Fuchslueger, Michelle Y. Wong, Daniela Yaffar, Joshua B. Fisher, Marie Arnaud, Lee H. Dietterich, Shalom D. Addo-Danso, Oscar J. Valverde-Barrantes, Monique Weemstra, Jing Cheng Ng, Richard J. Norby Feb 2024

Toward A Coordinated Understanding Of Hydro-Biogeochemical Root Functions In Tropical Forests For Application In Vegetation Models, Daniela F. Cusack, Bradley Christoffersen, Chris M. Smith-Martin, Kelly M. Andersen, Amanda L. Cordeiro, Katrin Fleischer, S. Joseph Wright, Nathaly R. Guerrero-Ramírez, Laynara F. Lugli, Lindsay A. Mcculloch, Mareli Sanchez-Julia, Sarah A. Batterman, Caroline Dallstream, Claire Fortunel, Laura Toro, Lucia Fuchslueger, Michelle Y. Wong, Daniela Yaffar, Joshua B. Fisher, Marie Arnaud, Lee H. Dietterich, Shalom D. Addo-Danso, Oscar J. Valverde-Barrantes, Monique Weemstra, Jing Cheng Ng, Richard J. Norby

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Tropical forest root characteristics and resource acquisition strategies are underrepresented in vegetation and global models, hampering the prediction of forest–climate feedbacks for these carbon-rich ecosystems. Lowland tropical forests often have globally unique combinations of high taxonomic and functional biodiversity, rainfall seasonality, and strongly weathered infertile soils, giving rise to distinct patterns in root traits and functions compared with higher latitude ecosystems. We provide a roadmap for integrating recent advances in our understanding of tropical forest belowground function into vegetation models, focusing on water and nutrient acquisition. We offer comparisons of recent advances in empirical and model understanding of root characteristics …


Regular Functions On The Scaled Hypercomplex Numbers, Daniel Alpay, Ilwoo Cho Feb 2024

Regular Functions On The Scaled Hypercomplex Numbers, Daniel Alpay, Ilwoo Cho

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this paper, we study the regularity of R-differentiable functions on open connected subsets of the scaled hypercomplex numbers {Ht}t∈R by studying the kernels of suitable differential operators {∇t}t∈R, up to scales in the real field R.


Comment On “Photons Can Tell ‘Contradictory’ Answer About Where They Have Been”, Gregory Reznick, Carlotta Versmold, Jan Dziewior, Florian Huber, Harald Weinfurter, Justin Dressel, Lev Vaidman Feb 2024

Comment On “Photons Can Tell ‘Contradictory’ Answer About Where They Have Been”, Gregory Reznick, Carlotta Versmold, Jan Dziewior, Florian Huber, Harald Weinfurter, Justin Dressel, Lev Vaidman

Mathematics, Physics, and Computer Science Faculty Articles and Research

Yuan and Feng (Eur. Phys. J. Plus 138:70, 2023) recently proposed a modification of the nested Mach–Zehnder interferometer experiment performed by Danan et al. (Phys. Rev. Lett. 111:240402, 2013) and argued that photons give “contradictory” answers about where they have been, when traces are locally imprinted on them in different ways. They concluded that their results are comprehensible from what they call the “three-path interference viewpoint,” but difficult to explain from the “discontinuous trajectory” viewpoint advocated by Danan et al. We argue that the weak trace approach (the basis of the “discontinuous trajectory” viewpoint) provides a consistent explanation of the …


Pseudo-Differential Operators On The Circle, Bernoulli Polynomials, Roger Gay, Ahmed Sebbar Feb 2024

Pseudo-Differential Operators On The Circle, Bernoulli Polynomials, Roger Gay, Ahmed Sebbar

Mathematics, Physics, and Computer Science Faculty Articles and Research

We show how the classical polylogarithm function Lis (z) and its relatives, the Hurwitz zeta function and the Lerch function are all of a spectral nature, and can explain many properties of the complex powers of the Laplacian on the circle and of the distribution (x +i0)s .We also make a relation with a result of Keiper [Fractional Calculus and its relationship to Riemann’s zeta function, Master of Science, Ohio State University, Mathematics (1975)].


Improving The Proof Of The Born Rule Using A Physical Requirement On The Dynamics Of Quantum Particles, Yakir Aharonov, Tomer Shushi Feb 2024

Improving The Proof Of The Born Rule Using A Physical Requirement On The Dynamics Of Quantum Particles, Yakir Aharonov, Tomer Shushi

Mathematics, Physics, and Computer Science Faculty Articles and Research

We propose a complete proof of the Born rule using an additional postulate stating that for a short enough time Δt between two measurements, a property of a particle will keep its values fixed. This dynamical postulate allows us to produce the Born rule in its explicit form by improving the result given in [1]. While the proposed postulate is still not part of the quantum mechanics postulates, every experiment obeys it, and it cannot be deduced using the standard postulates of quantum mechanics.


Spacetime Geometry Of Acoustics And Electromagnetism, Lucas Burns, Tatsuya Daniel, Stephon Alexander, Justin Dressel Feb 2024

Spacetime Geometry Of Acoustics And Electromagnetism, Lucas Burns, Tatsuya Daniel, Stephon Alexander, Justin Dressel

Mathematics, Physics, and Computer Science Faculty Articles and Research

Both acoustics and electromagnetism represent measurable fields in terms of dynamical potential fields. Electromagnetic force-fields form a spacetime bivector that is represented by a dynamical energy–momentum 4-vector potential field. Acoustic pressure and velocity fields form an energy–momentum density 4-vector field that is represented by a dynamical action scalar potential field. Surprisingly, standard field theory analyses of spin angular momentum based on these traditional potential representations contradict recent experiments, which motivates a careful reassessment of both theories. We analyze extensions of both theories that use the full geometric structure of spacetime to respect essential symmetries enforced by vacuum wave propagation. The …


Gaussian Rbf Kernels Via Fock Spaces: Quaternionic And Several Complex Variables Settings, Antonino De Martino, Kamal Diki Feb 2024

Gaussian Rbf Kernels Via Fock Spaces: Quaternionic And Several Complex Variables Settings, Antonino De Martino, Kamal Diki

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this paper, we study two extensions of the complex-valued Gaussian radial basis function (RBF) kernel and discuss their connections with Fock spaces in two different settings. First, we introduce the quaternionic Gaussian RBF kernel constructed using the theory of slice hyperholomorphic functions. Then, we consider the case of Gaussian RBF kernels in several complex variables.


Stabilizing Two-Qubit Entanglement With Dynamically Decoupled Active Feedback, Sacha Greenfield, Leigh Martin, Felix Motzoi, K. Birgitta Whaley, Justin Dressel, Eli M. Levenson-Falk Feb 2024

Stabilizing Two-Qubit Entanglement With Dynamically Decoupled Active Feedback, Sacha Greenfield, Leigh Martin, Felix Motzoi, K. Birgitta Whaley, Justin Dressel, Eli M. Levenson-Falk

Mathematics, Physics, and Computer Science Faculty Articles and Research

We propose and analyze a protocol for stabilizing a maximally entangled state of two noninteracting qubits using active state-dependent feedback from a continuous two-qubit half-parity measurement in coordination with a concurrent, noncommuting dynamical decoupling drive. We demonstrate that such a drive can be simultaneous with the measurement and feedback, while also playing a key part in the feedback protocol itself. We show that robust stabilization with near-unit fidelity can be achieved even in the presence of realistic nonidealities, such as time delay in the feedback loop, imperfect state-tracking, inefficient measurements, dephasing from 1/f-distributed qubit-frequency noise, and relaxation. We …


Sulfate Enhances The Adsorption And Retention Of Cu(Ii) And Zn(Ii) To Dispersed And Aggregated Iron Oxyhydroxide Nanoparticles, Emma M. Kocik, Abigail Kim, Miranda L. Aiken, Lauren Smith, Christopher S. Kim Feb 2024

Sulfate Enhances The Adsorption And Retention Of Cu(Ii) And Zn(Ii) To Dispersed And Aggregated Iron Oxyhydroxide Nanoparticles, Emma M. Kocik, Abigail Kim, Miranda L. Aiken, Lauren Smith, Christopher S. Kim

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The adsorption and retention of metal ions to nanoscale iron (hydr)oxides in aqueous systems is significantly influenced by prevailing environmental conditions. We examined the influence of sulfate, the second most common anion in seawater that is present in many other natural aquatic systems, on the adsorption and retention of Cu(II) and Zn(II) to synthetic iron oxyhydroxide nanoparticles (NPs) and their aggregates. Batch uptake experiments with monodisperse NPs and NPs aggregated by changes in pH, ionic strength, and temperature were conducted over sulfate concentrations ranging from 0 to 0.30 M. The introduction of 0.03 M sulfate significantly increased the initial adsorption …


Water Whiplash In Mediterranean Regions Of The World, Citlalli Madrigal, Rama Bedri, Thomas Piechota, Wenzhao Li, Glenn Tootle, Hesham El-Askary Jan 2024

Water Whiplash In Mediterranean Regions Of The World, Citlalli Madrigal, Rama Bedri, Thomas Piechota, Wenzhao Li, Glenn Tootle, Hesham El-Askary

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The presence of weather and water whiplash in Mediterranean regions of the world is analyzed using historical streamflow records from 1926 to 2023, depending on the region. Streamflow from the United States (California), Italy, Australia, Chile, and South Africa is analyzed using publicly available databases. Water whiplash—or the rapid shift of wet and dry periods—are compared. Wet and dry periods are defined based on annual deviations from the historical record average, and whiplash occurs when there is an abrupt change that overcomes an accommodated deficit or surplus. Of all the stations, there are more dry years (56%) than wet years …


Superconductivity Of Amorphous And Crystalline Re–Lu Films, Serafim Teknowijoyo, Armen Gulian Jan 2024

Superconductivity Of Amorphous And Crystalline Re–Lu Films, Serafim Teknowijoyo, Armen Gulian

Mathematics, Physics, and Computer Science Faculty Articles and Research

We report on superconducting properties of a novel material: rhenium-lutetium films. Different compositions of RexLu binary are explored from x ≈ 3.8 to close to pure Re stoichiometry. The highest critical temperature, up to 7 K, is obtained for x ≈ 10.5 in accordance with electron dispersive spectroscopy results. Depending on the deposition conditions, polycrystalline or amorphous films are obtainable, both of which are interesting for practical use. Crystalline structure of polycrystalline phase is identified as a non-centrosymmetric superconductor using grazing incidence x-ray diffractometry. Superconducting properties were characterized both resistively and magnetically. Magnetoresistivity and AC/DC susceptibility measurements allowed …


De Novo Drug Design Using Transformer-Based Machine Translation And Reinforcement Learning Of An Adaptive Monte Carlo Tree Search, Dony Ang, Cyril Rakovski, Hagop S. Atamian Jan 2024

De Novo Drug Design Using Transformer-Based Machine Translation And Reinforcement Learning Of An Adaptive Monte Carlo Tree Search, Dony Ang, Cyril Rakovski, Hagop S. Atamian

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The discovery of novel therapeutic compounds through de novo drug design represents a critical challenge in the field of pharmaceutical research. Traditional drug discovery approaches are often resource intensive and time consuming, leading researchers to explore innovative methods that harness the power of deep learning and reinforcement learning techniques. Here, we introduce a novel drug design approach called drugAI that leverages the Encoder–Decoder Transformer architecture in tandem with Reinforcement Learning via a Monte Carlo Tree Search (RL-MCTS) to expedite the process of drug discovery while ensuring the production of valid small molecules with drug-like characteristics and strong binding affinities towards …


Spatial Analyses On Pre-Earthquake Ionospheric Anomalies And Magnetic Storms Observed By China Seismo-Electromagnetic Satellite In August 2018, Jann-Yeng Tiger Liu, Xuhui Shen, Fu-Yuan Chang, Yuh-Ing Chen, Yang-Yi Sun, Chieh‑Hung Chen, Sergey Pulinets, Katsumi Hattori, Dimitar Ouzounov, Valerio Tramutoli, Michel Parrot, Wei-Sheng Chen, Cheng-Yan Liu, Fei Zhang, Dapeng Liu, Xue-Min Zhang, Rui Yan, Qiao Wang Jan 2024

Spatial Analyses On Pre-Earthquake Ionospheric Anomalies And Magnetic Storms Observed By China Seismo-Electromagnetic Satellite In August 2018, Jann-Yeng Tiger Liu, Xuhui Shen, Fu-Yuan Chang, Yuh-Ing Chen, Yang-Yi Sun, Chieh‑Hung Chen, Sergey Pulinets, Katsumi Hattori, Dimitar Ouzounov, Valerio Tramutoli, Michel Parrot, Wei-Sheng Chen, Cheng-Yan Liu, Fei Zhang, Dapeng Liu, Xue-Min Zhang, Rui Yan, Qiao Wang

Mathematics, Physics, and Computer Science Faculty Articles and Research

The China Seismo-Electromagnetic Satellite (CSES), with a sun-synchronous orbit at 507 km altitude, was launched on 2 February 2018 to investigate pre-earthquake ionospheric anomalies (PEIAs) and ionospheric space weather. The CSES probes manifest longitudinal features of four-peak plasma density and three plasma depletions in the equatorial/low-latitudes as well as mid-latitude troughs. CSES plasma and the total electron content (TEC) of the global ionosphere map (GIM) are used to study PEIAs associated with a destructive M7.0 earthquake and its followed M6.5 and M6.3/M6.9 earthquakes in Lombok, Indonesia, on 5, 17, and 19 August 2018, respectively, as well as to examine ionospheric …


Programmable Heisenberg Interactions Between Floquet Qubits, Long B. Nguyen, Yosep Kim, Akel Hashim, Noah Goss, Brian Marinelli, Bibek Bhandari, Debmalya Das, Ravi K. Naik, John Mark Kreikebaum, Andrew N. Jordan, David I. Santiago, Irfan Siddiqi Jan 2024

Programmable Heisenberg Interactions Between Floquet Qubits, Long B. Nguyen, Yosep Kim, Akel Hashim, Noah Goss, Brian Marinelli, Bibek Bhandari, Debmalya Das, Ravi K. Naik, John Mark Kreikebaum, Andrew N. Jordan, David I. Santiago, Irfan Siddiqi

Mathematics, Physics, and Computer Science Faculty Articles and Research

The trade-off between robustness and tunability is a central challenge in the pursuit of quantum simulation and fault-tolerant quantum computation. In particular, quantum architectures are often designed to achieve high coherence at the expense of tunability. Many current qubit designs have fixed energy levels and consequently limited types of controllable interactions. Here by adiabatically transforming fixed-frequency superconducting circuits into modifiable Floquet qubits, we demonstrate an XXZ Heisenberg interaction with fully adjustable anisotropy. This interaction model can act as the primitive for an expressive set of quantum operations, but is also the basis for quantum simulations of spin systems. To illustrate …


Group 14 Metallocene Catalysts For Carbonyl Hydroboration And Cyanosilylation, Haley J. Robertson, Mallory N. Fujiwara, Allegra L. Liberman-Martin Jan 2024

Group 14 Metallocene Catalysts For Carbonyl Hydroboration And Cyanosilylation, Haley J. Robertson, Mallory N. Fujiwara, Allegra L. Liberman-Martin

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

A series of six Group 14 metallocene compounds (M = Ge, Sn, Pb) were studied as catalysts for carbonyl hydroboration and cyanosilylation reactions at room temperature. Both bis(pentamethylcyclopentadienyl) and tetramethyldisiloxa[3]metallocenophane compounds were compared. The tin and lead metallocenophanes exhibited the highest reactivity in hydroboration and cyanosilylation reactions. Hammett analysis of aldehyde hydroboration provided a ρ value of 0.73, suggesting a buildup of negative charge during the turnover-limiting step, consistent with the transition state for hydride transfer to the carbonyl center. NMR studies of Lewis acidity indicate that the Ge, Sn, and Pb tetramethyldisiloxa[3]metallocenophane compounds are weak Lewis acids.


What Does ‘(Non)-Absoluteness Of Observed Events’ Mean?, Emily Adlam Jan 2024

What Does ‘(Non)-Absoluteness Of Observed Events’ Mean?, Emily Adlam

Mathematics, Physics, and Computer Science Faculty Articles and Research

Recently there have emerged an assortment of theorems relating to the ‘absoluteness of emerged events,’ and these results have sometimes been used to argue that quantum mechanics may involve some kind of metaphysically radical non-absoluteness, such as relationalism or perspectivalism. However, in our view a close examination of these theorems fails to convincingly support such possibilities. In this paper we argue that the Wigner’s friend paradox, the theorem of Bong et al and the theorem of Lawrence et al are all best understood as demonstrating that if quantum mechanics is universal, and if certain auxiliary assumptions hold, then the world …


Light That Appears To Come From A Source That Does Not Exist, Itamar Stern, Yakov Bloch, Einav Grynszpan, Merav Kahn, Yakir Aharonov, Justin Dressel, Eliahu Cohen, John C. Howell Jan 2024

Light That Appears To Come From A Source That Does Not Exist, Itamar Stern, Yakov Bloch, Einav Grynszpan, Merav Kahn, Yakir Aharonov, Justin Dressel, Eliahu Cohen, John C. Howell

Mathematics, Physics, and Computer Science Faculty Articles and Research

Superoscillatory, band-limited functions oscillate faster than their fastest Fourier component. Superoscillations have been intensively explored recently as they give rise to many out-of-the-spectrum phenomena entailing both fundamental and applied significance. We experimentally demonstrate a form of superoscillations which is manifested by light apparently coming from a source located far away from the actual one. These superoscillations are sensed through sharp transverse shifts in the local wave vector at the minima of a pinhole diffraction pattern. We call this phenomenon “optical ventriloquism.”


Piecing Together Performance: Collaborative, Participatory Research-Through-Design For Better Diversity In Games, Daniel L. Gardner, Louanne Boyd, Reginald T. Gardner Jan 2024

Piecing Together Performance: Collaborative, Participatory Research-Through-Design For Better Diversity In Games, Daniel L. Gardner, Louanne Boyd, Reginald T. Gardner

Engineering Faculty Articles and Research

Digital games are a multi-billion-dollar industry whose production and consumption extend globally. Representation in games is an increasingly important topic. As those who create and consume the medium grow ever more diverse, it is essential that player or user-experience research, usability, and any consideration of how people interface with their technology is exercised through inclusive and intersectional lenses. Previous research has identified how character configuration interfaces preface white-male defaults [39, 40, 67]. This study relies on 1-on-1 play-interviews where diverse participants attempt to create “themselves” in a series of games and on group design activities to explore how participants may …


Permafrost Carbon: Progress On Understanding Stocks And Fluxes Across Northern Terrestrial Ecosystems, Claire C. Treat, Anna-Maria Virkkala, Eleanor Burke, Lori Bruhwiler, Abhishek Chatterjee, Joshua B. Fisher, Josh Hashemi, Frans-Jan W. Parmentier, Brendan M. Rogers, Sebastian Westermann, Jennifer D. Watts, Elena Blanc-Betes, Matthias Fuchs, Stefan Kruse, Avni Malhotra, Kimberley Miner, Jens Strauss, Amanda Armstrong, Howard E. Epstein, Bradley Gay, Mathias Goeckede, Aram Kalhori, Dan Kou, Charles E. Miller, Susan M. Natali, Youmi Oh, Sarah Shakil, Oliver Sonnentag, Ruth K. Varner, Scott Zolkos, Edward A.G. Schuur, Gustaf Hugelius Jan 2024

Permafrost Carbon: Progress On Understanding Stocks And Fluxes Across Northern Terrestrial Ecosystems, Claire C. Treat, Anna-Maria Virkkala, Eleanor Burke, Lori Bruhwiler, Abhishek Chatterjee, Joshua B. Fisher, Josh Hashemi, Frans-Jan W. Parmentier, Brendan M. Rogers, Sebastian Westermann, Jennifer D. Watts, Elena Blanc-Betes, Matthias Fuchs, Stefan Kruse, Avni Malhotra, Kimberley Miner, Jens Strauss, Amanda Armstrong, Howard E. Epstein, Bradley Gay, Mathias Goeckede, Aram Kalhori, Dan Kou, Charles E. Miller, Susan M. Natali, Youmi Oh, Sarah Shakil, Oliver Sonnentag, Ruth K. Varner, Scott Zolkos, Edward A.G. Schuur, Gustaf Hugelius

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Significant progress in permafrost carbon science made over the past decades include the identification of vast permafrost carbon stocks, the development of new pan-Arctic permafrost maps, an increase in terrestrial measurement sites for CO2 and methane fluxes, and important factors affecting carbon cycling, including vegetation changes, periods of soil freezing and thawing, wildfire, and other disturbance events. Process-based modeling studies now include key elements of permafrost carbon cycling and advances in statistical modeling and inverse modeling enhance understanding of permafrost region C budgets. By combining existing data syntheses and model outputs, the permafrost region is likely a wetland methane …


A Little More On Ideals Associated With Sublocales, Oghenetega Ighedo, Grace Wakesho Kivunga, Dorca Nyamusi Stephen Jan 2024

A Little More On Ideals Associated With Sublocales, Oghenetega Ighedo, Grace Wakesho Kivunga, Dorca Nyamusi Stephen

Mathematics, Physics, and Computer Science Faculty Articles and Research

As usual, let RL denote the ring of real-valued continuous functions on a completely regular frame L. Let βL and λL denote the Stone- Čech compactification of L and the Lindelöf coreflection of L, respectively. There is a natural way of associating with each sublocale of βL two ideals of RL, motivated by a similar situation in C(X). In [12], the authors go one step further and associate with each sublocale of λL an ideal of RL in a manner similar to one of the ways one does it for sublocales of βL. The intent in this paper …


Studying The Impact Of The Geospace Environment On Solar Lithosphere Coupling And Earthquake Activity, Dimitar Ouzounov, Galina Khachikyan Dec 2023

Studying The Impact Of The Geospace Environment On Solar Lithosphere Coupling And Earthquake Activity, Dimitar Ouzounov, Galina Khachikyan

Mathematics, Physics, and Computer Science Faculty Articles and Research

In solar–terrestrial physics, there is an open question: does a geomagnetic storm affect earthquakes? We expand research in this direction, analyzing the seismic situation after geomagnetic storms (GMs) accompanied by the precipitation of relativistic electrons from the outer radiation belt to form an additional radiation belt (RB) around lower geomagnetic lines. We consider four widely discussed cases in the literature for long-lived (weeks, months) RBs due to GMs and revealed that the 1/GMs 24 March 1991 with a new RB at L~2.6 was followed by an M7.0 earthquake in Alaska, 30 May 1991, near footprint L = 2.69; the 2/GMs …


Mutational Analysis Of The Nitrogenase Carbon Monoxide Protective Protein Cown Reveals That A Conserved C‑Terminal Glutamic Acid Residue Is Necessary For Its Activity, Dustin L. Willard, Joshuah J. Arellano, Mitch Underdahl, Terrence M. Lee, Avinash S. Ramaswamy, Gabriella Fumes, Agatha Kliman, Emily Y. Wong, Cedric P. Owens Dec 2023

Mutational Analysis Of The Nitrogenase Carbon Monoxide Protective Protein Cown Reveals That A Conserved C‑Terminal Glutamic Acid Residue Is Necessary For Its Activity, Dustin L. Willard, Joshuah J. Arellano, Mitch Underdahl, Terrence M. Lee, Avinash S. Ramaswamy, Gabriella Fumes, Agatha Kliman, Emily Y. Wong, Cedric P. Owens

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Nitrogenase is the only enzyme that catalyzes the reduction of nitrogen gas into ammonia. Nitrogenase is tightly inhibited by the environmental gas carbon monoxide (CO). Many nitrogen fixing bacteria protect nitrogenase from CO inhibition using the protective protein CowN. This work demonstrates that a conserved glutamic acid residue near the C-terminus of Gluconacetobacter diazotrophicus CowN is necessary for its function. Mutation of the glutamic acid residue abolishes both CowN’s protection against CO inhibition and the ability of CowN to bind to nitrogenase. In contrast, a conserved C-terminal cysteine residue is not important for CO protection by CowN. Overall, this work …


Random Variable Spaces: Mathematical Properties And An Extension To Programming Computable Functions, Mohammed Kurd-Misto Dec 2023

Random Variable Spaces: Mathematical Properties And An Extension To Programming Computable Functions, Mohammed Kurd-Misto

Computational and Data Sciences (PhD) Dissertations

This dissertation aims to extend the boundaries of Programming Computable Functions (PCF) by introducing a novel collection of categories referred to as Random Variable Spaces. Originating as a generalization of Quasi-Borel Spaces, Random Variable Spaces are rigorously defined as categories where objects are sets paired with a collection of random variables from an underlying measurable space. These spaces offer a theoretical foundation for extending PCF to natively handle stochastic elements.

The dissertation is structured into seven chapters that provide a multi-disciplinary background, from PCF and Measure Theory to Category Theory with special attention to Monads and the Giry Monad. The …


Vrmovian - An Immersive Data Annotation Tool For Visual Analysis Of Human Interactions In Vr, Isaac Browen Nov 2023

Vrmovian - An Immersive Data Annotation Tool For Visual Analysis Of Human Interactions In Vr, Isaac Browen

Student Scholar Symposium Abstracts and Posters

Understanding human behavior in virtual reality (VR) is a key component for developing intelligent systems to enhance human focused VR experiences. The ability to annotate human motion data proves to be a very useful way to analyze and understand human behavior. However, due to the complexity and multi-dimensionality of human activity data, it is necessary to develop software that can display the data in a comprehensible way and can support intuitive data annotation for developing machine learning models able recognize and assist human motions in VR (e.g., remote physical therapy). Although past research has been done to improve VR data …


User Feedback On Celebratory Technology Model For Reducing Stigma, Evelyn Lawrie, Daniel Dinh, Sav Avalos, Jack De Bruyn, Spencer Au, Christian Lopez, Ray Tan, Cyrus Fa'amafoe Nov 2023

User Feedback On Celebratory Technology Model For Reducing Stigma, Evelyn Lawrie, Daniel Dinh, Sav Avalos, Jack De Bruyn, Spencer Au, Christian Lopez, Ray Tan, Cyrus Fa'amafoe

Student Scholar Symposium Abstracts and Posters

Social stigma is a complex manifestation that affects humanity, particularly individuals with disabilities and other marginalized groups, including those with physical, cognitive, and emotional conditions. Society often judges these individuals' interactions with the world, and many technologies designed to assist those with disabilities attempt to change their daily interactions and behaviors. Nonetheless, when the emphasis is placed on validating disabled identities, there is a potential for it to be seen as "inspiration porn." This approach might inadvertently reduce inclusivity and do little to challenge negative stereotypes; it can also lead to the objectification of individuals with disabilities. Therefore, this project …


Acoustically Levitated Whispering-Gallery Mode Microlasers, H. M. Reynoso-De La Cruz, E. D. Hernández-Campos, E. Ortiz-Ricardo, A. Martínez-Borquez, I. Rosas-Román, V. Contreras, G. Ramos-Ortiz, B. Mendoza-Santoyo, Cecilia Zurita-Lopez, R. Castro-Beltrán Nov 2023

Acoustically Levitated Whispering-Gallery Mode Microlasers, H. M. Reynoso-De La Cruz, E. D. Hernández-Campos, E. Ortiz-Ricardo, A. Martínez-Borquez, I. Rosas-Román, V. Contreras, G. Ramos-Ortiz, B. Mendoza-Santoyo, Cecilia Zurita-Lopez, R. Castro-Beltrán

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Acoustic levitation has become a crucial technique for contactless manipulation in several fields, particularly in biological applications. However, its application in the photonics field remains largely unexplored. In this study, we implement an affordable and innovative phased-array levitator that enables stable trapping in the air of micrometer dye-doped droplets, thereby enabling the creation of microlasers. For the first time, this paper presents a detailed performance of the levitated microlaser cavity, supported by theoretical analysis concerning the hybrid technology based on the combination of whispering-gallery modes and acoustic fields. The pressure field distribution inside the acoustic cavity is numerically solved and …


The Seasonal Origins And Ages Of Water Provisioning Streams And Trees In A Tropical Montane Cloud Forest, Emily Burt, Gregory R. Goldsmith, Roxanne M. Cruz-De Hoyos, Adan Julian Ccahuana Quispe, A. Joshua West Nov 2023

The Seasonal Origins And Ages Of Water Provisioning Streams And Trees In A Tropical Montane Cloud Forest, Emily Burt, Gregory R. Goldsmith, Roxanne M. Cruz-De Hoyos, Adan Julian Ccahuana Quispe, A. Joshua West

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Determining the sources of water provisioning streams, soils, and vegetation can provide important insights into the water that sustains critical ecosystem functions now and how those functions may be expected to respond given projected changes in the global hydrologic cycle. We developed multi-year time series of water isotope ratios (δ18O and δ2H) based on twice-monthly collections of precipitation, lysimeter, and tree branch xylem waters from a seasonally dry tropical montane cloud forest in the southeastern Andes mountains of Peru. We then used this information to determine indices of the seasonal origins, the young water fractions …