Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 121 - 150 of 36223

Full-Text Articles in Physical Sciences and Mathematics

Piezochromic Behavior Of 2,4,6-Triphenylpyrylium Tetrachloroferrate, Princess Canasa, David King, Petrika Cifligu, Adrian F. Lua Sanchez, Si L. Chen, Haesook Han, Trimaan Malik, Brant Billinghurst, Jianbao Zhao, Changyong Park, George R. Rossman, Michael Pravica, Pradip K. Bhowmik, Egor Evlyukhin Apr 2024

Piezochromic Behavior Of 2,4,6-Triphenylpyrylium Tetrachloroferrate, Princess Canasa, David King, Petrika Cifligu, Adrian F. Lua Sanchez, Si L. Chen, Haesook Han, Trimaan Malik, Brant Billinghurst, Jianbao Zhao, Changyong Park, George R. Rossman, Michael Pravica, Pradip K. Bhowmik, Egor Evlyukhin

Chemistry and Biochemistry Faculty Research

In advanced photonics, there is a growing interest in piezochromic luminescent materials that exhibit multicolor switching, driven by their potential applications in optical recording, memory, and sensors. Here, the piezochromic behavior of 2,4,6-triphenylpyrylium tetrachloroferrate (Py-FeCl4) under high pressures from 0 to 9 GPa is reported. The observed multicolor changing properties of Py-FeCl4 (yellow–orange–red–maroon–black) are found to be fully reversible upon decompression to ambient conditions. The mechanism of Py-FeCl4 piezochromism is investigated via Raman, infrared, and UV–vis spectroscopy combined with powder X-ray Diffraction. The absence of structural phase transitions as well as the abrupt shifts of bandgap …


Thermal Performance Investigation Of Thermoelectric Cooling System With Various Hot-Side Cooling Methods, Bowo Y. Prasetyo, Parisya P. Rosulindo, Fujen Wang Apr 2024

Thermal Performance Investigation Of Thermoelectric Cooling System With Various Hot-Side Cooling Methods, Bowo Y. Prasetyo, Parisya P. Rosulindo, Fujen Wang

Makara Journal of Technology

Thermoelectric devices have been widely used in various applications, including cooling and power generation. The potential application of thermoelectric cooling systems has been studied. However, these systems still face challenges in achieving optimal performance compared with other cooling systems. Several factors, including the hot-side cooling method, influence the performance of thermoelectric systems. This study aimed to investigate the effects of different hot-side cooling methods on the thermoelectric performance and thermal behavior of thermoelectric cooling systems. The testing methods involved the combination of the thermoelectric module with five hot-side heat exchangers, including a square heatsink, a round heatsink, a two-pipe heat …


Towards A Practical Method For Monitoring Kinetic Processes In Polymers With Low-Frequency Raman Spectroscopy, Robert Vito Chimenti Apr 2024

Towards A Practical Method For Monitoring Kinetic Processes In Polymers With Low-Frequency Raman Spectroscopy, Robert Vito Chimenti

Theses and Dissertations

Unlike liquids and crystalline solids, glassy materials exist in a constant state of structural nonequilibrium. Therefore, a comprehensive understanding of material kinetics is critical for understanding the structure-property-processing relationships of polymeric materials. Amorphous materials universally display low-frequency Raman features related to the phonon density of states resulting in a broad disorder band for Raman shifts below 100 cm-1, which is related to the conformational entropy and the modulus. This disorder band is dominated by the Boson peak, a feature due to phonon scattering because of disorder and can be related to the transverse sound velocity of the material, and a …


Gate-Controlled Supercurrent Effect In Dry-Etched Dayem Bridges Of Non-Centrosymmetric Niobium Rhenium, Jennifer Koch, Carla Cirillo, Sebastiano Battisti, Leon Ruf, Zahra Makhdoumi Kakhaki, Alessandro Paghi, Armen Gulian, Serafim Teknowijoyo, Giorgio De Simoni, Francesco Giazotto, Carmine Attanasio, Elke Scheer, Angelo Di Bernardo Apr 2024

Gate-Controlled Supercurrent Effect In Dry-Etched Dayem Bridges Of Non-Centrosymmetric Niobium Rhenium, Jennifer Koch, Carla Cirillo, Sebastiano Battisti, Leon Ruf, Zahra Makhdoumi Kakhaki, Alessandro Paghi, Armen Gulian, Serafim Teknowijoyo, Giorgio De Simoni, Francesco Giazotto, Carmine Attanasio, Elke Scheer, Angelo Di Bernardo

Mathematics, Physics, and Computer Science Faculty Articles and Research

The application of a gate voltage to control the superconducting current flowing through a nanoscale superconducting constriction, named as gate-controlled supercurrent (GCS), has raised great interest for fundamental and technological reasons. To gain a deeper understanding of this effect and develop superconducting technologies based on it, the material and physical parameters crucial for the GCS effect must be identified. Top-down fabrication protocols should also be optimized to increase device scalability, although studies suggest that top-down fabricated devices are more resilient to show a GCS. Here, we investigate gated superconducting nanobridges made with a top-down fabrication process from thin films of …


Deep Selenium Donors In Zngep2 Crystals: An Electron Paramagnetic Resonance Study Of A Nonlinear Optical Material, Timothy D. Gustafson, Larry E. Halliburton, Nancy C. Giles, Peter G. Schunemann, Kevin T. Zawilski, J. Jesenovec, Kent L. Averett, Jeremy Slagle Apr 2024

Deep Selenium Donors In Zngep2 Crystals: An Electron Paramagnetic Resonance Study Of A Nonlinear Optical Material, Timothy D. Gustafson, Larry E. Halliburton, Nancy C. Giles, Peter G. Schunemann, Kevin T. Zawilski, J. Jesenovec, Kent L. Averett, Jeremy Slagle

Faculty Publications

Zinc germanium diphosphide (ZnGeP2) is a ternary semiconductor best known for its nonlinear optical properties. A primary application is optical parametric oscillators operating in the mid-infrared region. Controlled donor doping provides a method to minimize the acceptor-related absorption bands that limit the output power of these devices. In the present study, a ZnGeP2 crystal is doped with selenium during growth. Selenium substitutes for phosphorus and serves as a deep donor. Significant concentrations of native defects (zinc vacancies, germanium-on-zinc antisites, and phosphorous vacancies) are also present in the crystal. Electron paramagnetic resonance (EPR) is used to establish the …


A Jwst Survey Of The Supernova Remnant Cassiopeia A, Dan Milisavljevic, Tea Temim, Ilse De Looze, Danielle Dickinson, J. Martin Laming, Robert Fesen, John C. Raymond, Richard G. Arendt, Jacco Vink, Bettina Posselt, George G. Pavlov, Ori D. Fox, Ethan Pinarski, Bhagya Subrayan, Judy Schmidt, William P. Blair, Armin Rest, Daniel Patnaude, Bon Chul Koo, Jeonghee Rho, Salvatore Orlando, Hans Thomas Janka, Moira Andrews, Michael J. Barlow, Adam Burrows, Roger Chevalier, Geoffrey Clayton, Claes Fransson, Christopher Fryer, Haley L. Gomez, Florian Kirchschlager Apr 2024

A Jwst Survey Of The Supernova Remnant Cassiopeia A, Dan Milisavljevic, Tea Temim, Ilse De Looze, Danielle Dickinson, J. Martin Laming, Robert Fesen, John C. Raymond, Richard G. Arendt, Jacco Vink, Bettina Posselt, George G. Pavlov, Ori D. Fox, Ethan Pinarski, Bhagya Subrayan, Judy Schmidt, William P. Blair, Armin Rest, Daniel Patnaude, Bon Chul Koo, Jeonghee Rho, Salvatore Orlando, Hans Thomas Janka, Moira Andrews, Michael J. Barlow, Adam Burrows, Roger Chevalier, Geoffrey Clayton, Claes Fransson, Christopher Fryer, Haley L. Gomez, Florian Kirchschlager

Michigan Tech Publications, Part 2

We present initial results from a James Webb Space Telescope (JWST) survey of the youngest Galactic core-collapse supernova remnant, Cassiopeia A (Cas A), made up of NIRCam and MIRI imaging mosaics that map emission from the main shell, interior, and surrounding circumstellar/interstellar material (CSM/ISM). We also present four exploratory positions of MIRI Medium Resolution Spectrograph integral field unit spectroscopy that sample ejecta, CSM, and associated dust from representative shocked and unshocked regions. Surprising discoveries include (1) a weblike network of unshocked ejecta filaments resolved to ∼0.01 pc scales exhibiting an overall morphology consistent with turbulent mixing of cool, low-entropy matter …


Novel Technique Using Cherenkov Radiation For Nuclear Terrorism Prevention, Matthew Mark Romano Apr 2024

Novel Technique Using Cherenkov Radiation For Nuclear Terrorism Prevention, Matthew Mark Romano

Aerospace, Physics, and Space Science Student Publications

I present a novel approach for detecting rogue nuclear material at country borders, addressing the current lack of reliable and economical mechanisms for this purpose. My proposed methodology utilizes Cherenkov radiation emitted by cosmic muons to reconstruct the particle's trajectory using a single detector. By analyzing the eccentricity of the projected ellipse formed when the Cherenkov cone intersects the detector plane, one can determine the angle a muon makes with the detector. This innovative technique effectively doubles the efficiency of the detection system by halving the number of required detectors while simultaneously increasing the resolution of the measurements taken.


Implementation Of Python Based High Voltage Tests For Gem Detectors, John Paul Hernandez Apr 2024

Implementation Of Python Based High Voltage Tests For Gem Detectors, John Paul Hernandez

Aerospace, Physics, and Space Science Student Publications

The Compact Muon Solenoid, CMS, and other detectors at LHC are in the process of being upgraded for the HL-LHC (High-Luminosity Large Hadron Collider) which will produce more than 5 times the particle interactions than of the current LHC. One upgrade to CMS is the introduction of new GEM detectors (Gaseous Electron Multiplier), GE2/1 and ME0 shown at right are new detectors to CMS and therefore must be tested thoroughly prior to being installed.


Adapt Laser Shaping, Quinlin Reynolds Apr 2024

Adapt Laser Shaping, Quinlin Reynolds

ATU Research Symposium

Investigation into producing a machine learning algorithm that allows a He-Ne laser to classify whether a produced beam shape is uniformly gaussian or not, in order to adaptively move the laser to consistently target the encoded interference pattern area. This will then result in continuous uniform beam shapes of the desired output.


Uncharted: Measuring Beyond The Inner Galaxy, Carly J. Fitzgerald, Sammy Schneider, Landyn Schroeder Apr 2024

Uncharted: Measuring Beyond The Inner Galaxy, Carly J. Fitzgerald, Sammy Schneider, Landyn Schroeder

Research & Creative Achievement Day

My goal in conducting my research was to measure the speed of matter in the Milky Way galaxy using CHART -- the Completely Hackable Amateur Radio Telescope is an inexpensive, constructable telescope used to detect radio frequency waves in the galaxy. Using these waves and the doppler shift equation, I was able to measure the velocity of hydrogen gas in the inner galaxy. In doing this successfully, I was able to graph the relationship between the velocity and radius which is the rotational curve of the inner galaxy. I then collected and used additional data to calculate the rotational curve …


Anomalies Within Winona Campus On Protected Wavelengths, Landyn L. Schroeder, Carly Fitzgerald, Sammy Schneider Apr 2024

Anomalies Within Winona Campus On Protected Wavelengths, Landyn L. Schroeder, Carly Fitzgerald, Sammy Schneider

Research & Creative Achievement Day

The present study is being conducted with the intention of identifying where, why, and what is transmitting a radio signal of 1419 mmHg. This anomaly is intriguing because 1400-1427 mmHg waves are protected. Because this is a protected wave, it was interesting that it was being transmitted on Winona State Campus which is where the team began research. To gain information, the research team cast the horn to the sky at an elevation of 37 degrees and in the directions of 344 , 213, 143, and 60 degrees bearing, respectively. Now that this baseline information has been collected, the team …


Radiative Cooling For Energy-Efficient Power Generation, Rickia Hanna Apr 2024

Radiative Cooling For Energy-Efficient Power Generation, Rickia Hanna

Celebrating Scholarship and Creativity Day (2018-)

This thesis examined radiative cooling on a small scale using a hybrid photovoltaic/radiative cooling model system, to determine its efficiency for large-scale power generation. Radiative cooling is concerned with heat transfer and this thesis’s main goal is to harness that heat energy to produce electricity. The efficiency of the system was tested using various light sources at different angles and total power output. The testing was done several times and there proved to be a proportional relationship between light intensity and current output. However, due to the performance threshold of the PTEC module, the component of the system used to …


The Black-To-White Hole Transition, Farshid Soltani Apr 2024

The Black-To-White Hole Transition, Farshid Soltani

Electronic Thesis and Dissertation Repository

Classically, an isolated black hole is a stable gravitational object. If however semiclassical effects are taken into account, an isolated black hole can be shown to slowly radiate its mass away in a process called evaporation. At the end of the evaporation process, when the size of the horizon becomes Planckian, the quantum nature of the gravitational field can no longer be neglected and the dynamics of the horizon is governed by quantum gravity. The main objective of this thesis is the systematic investigation of a tentative scenario for the “end of the life” of a black hole: the black-to-white …


Machine Learning Techniques For Intermediate Mass Gap Lepton Partner Searches At The Large Hadron Collider, Bhaskar Dutta, Tathagata Ghosh, Alyssa Horne, Jason Kumar, Sean Palmer, Pearl Sandick, Marcus Snedeker, Patrick Stengel, Joel W. Walker Apr 2024

Machine Learning Techniques For Intermediate Mass Gap Lepton Partner Searches At The Large Hadron Collider, Bhaskar Dutta, Tathagata Ghosh, Alyssa Horne, Jason Kumar, Sean Palmer, Pearl Sandick, Marcus Snedeker, Patrick Stengel, Joel W. Walker

Michigan Tech Publications, Part 2

We consider machine learning techniques associated with the application of a boosted decision tree (BDT) to searches at the Large Hadron Collider (LHC) for pair-produced lepton partners which decay to leptons and invisible particles. This scenario can arise in the minimal supersymmetric Standard Model (MSSM), but can be realized in many other extensions of the Standard Model (SM). We focus on the case of intermediate mass splitting (∼30 GeV) between the dark matter (DM) and the scalar. For these mass splittings, the LHC has made little improvement over LEP due to large electroweak backgrounds. We find that the use of …


Computational Modeling Of Retinal Damage Thresholds, Payton Hoffman, Eos Shapland, Alan Enriquez Apr 2024

Computational Modeling Of Retinal Damage Thresholds, Payton Hoffman, Eos Shapland, Alan Enriquez

SACAD: John Heinrichs Scholarly and Creative Activity Days

The Scalable Effects Simulation Environment(SESE), is the computational Biophysics software contracted by Nanohmics we used for our research. The goal was to find the minimum energy necessary to damage the retina from 2 laser sources, a 532 nm He-Ne source, and Supercontinuum Laser(SCL) source at 400-1400nm. We needed a 10 times damage ratio for significance. Our data did not show this trend.


High Powered Rocket Modification, Joshua Gage Apr 2024

High Powered Rocket Modification, Joshua Gage

SACAD: John Heinrichs Scholarly and Creative Activity Days

Rocketry has always been a fun challenge for me. Since not only was I able to learn something new every time I did it, but I was able to do something with my hands as well. One area that has been very challenging for me is how to put a tracker onto a rocket that has no electronics bay. And studying for the L2 Certification tests. And this poster shows my thoughts and process I did to pass my L2 Certification Flight.


Luminescence And Structural Properties Of Silicon-Germanium Quantum Structures Fabricated By Ion Implantation, Matheus Coelho Adam Apr 2024

Luminescence And Structural Properties Of Silicon-Germanium Quantum Structures Fabricated By Ion Implantation, Matheus Coelho Adam

Electronic Thesis and Dissertation Repository

The advancement of semiconductor materials has played a crucial role in driving positive technological breakthroughs that impact humanity in numerous ways. The presence of defects significantly alters the physical properties of semiconductors, making their analysis essential in the fabrication of semiconductor devices. I presented a new method to quantify surface and near-surface defects in single crystal semiconductors. Epitaxially-grown silicon was measured by low energy electron diffraction (LEED) to obtain the surface Debye temperature (θD). The results showed the surface θD of bulk Si (001), 1.0 μm, and 0.6 μm Si on sapphire of 333 K, 299 K, …


Float Like A Butterfly, Sting Like A Bee!, Kobe D. Rome Apr 2024

Float Like A Butterfly, Sting Like A Bee!, Kobe D. Rome

SACAD: John Heinrichs Scholarly and Creative Activity Days

By injecting an electron into the empty pie* molecular orbital (LUMO) of Amino Acids in gas phase, we measure the Vertical Attachment Energies (VAEs) for the formation of short-lived anion states of these species using electron transmission spectroscopy (ETS). Our ETS study, a first of its kind to measure the VAE for the simplest of proteins, Glycine-Glycine (Gly-Gly), is currently in progress. Based on our previous measurements for several Amino Acids including Glycine, we expect a common range of attachment energy (1.50 – 2.00 eV) for Gly-Gly.


Post-Modeling Adjustments And Delivered Dose Verification Of The 6fff Beam Model Commissioned For The Monaco Treatment Planning System, Grant C. Debevec Apr 2024

Post-Modeling Adjustments And Delivered Dose Verification Of The 6fff Beam Model Commissioned For The Monaco Treatment Planning System, Grant C. Debevec

LSU Master's Theses

External beam radiation therapy has been shown to be an effective treatment method for tumors and abnormalities of the spine and vertebral region. Treating the spine using a stereotactic body radiation therapy (SBRT) technique can reduce toxicity to the spinal cord. The 6 MV flattening filter free (6FFF) beam model is currently used to plan and calculate dose for SBRT treatment plans, and the treatment plans are delivered using a linear accelerator (LINAC).

The commissioned beam model represents an invariant component of a LINAC. For volumetric modulated arc therapy (VMAT) treatment plans, the multileaf collimator (MLC) positions are changing throughout …


All-Optical Probes Of Particle-Like Charge Migration Dynamics, Kyle A. Hamer Apr 2024

All-Optical Probes Of Particle-Like Charge Migration Dynamics, Kyle A. Hamer

LSU Doctoral Dissertations

Particle-like charge migration (CM) is the coherent, back-and-forth motion of a positively-charged electron hole along the backbone of a molecule following a sudden ionization. CM in small molecules generally occurs on an Angstrom (10-10 m) spatial scale and an attosecond (10-18 s) timescale. I use time-dependent density-functional theory (TDDFT) to simulate CM modes in organic molecules, and to explore all-optical probes of this attosecond electron dynamics using high-harmonic spectroscopy (HHS). By leveraging my results from previous studies of two-center interferences in carbon dichalcogens, in which I separated the harmonic signal into contributions from individual Kohn-Sham orbitals, I first …


A Search For Intermediate-Mass Black Holes In Compact Stellar Systems Through Optical Emissions From Tidal Disruption Events, Richard T. Pomeroy, Mark A. Norris Apr 2024

A Search For Intermediate-Mass Black Holes In Compact Stellar Systems Through Optical Emissions From Tidal Disruption Events, Richard T. Pomeroy, Mark A. Norris

Physics and Astronomy Faculty Publications and Presentations

Intermediate-mass black holes (IMBH) are expected to exist in globular clusters (GCs) and compact stellar systems (CSS) in general, but none have been conclusively detected. Tidal disruption events (TDEs), where a star is tidally disrupted by the gravitational field of a black hole, have been observed to occur around the supermassive black holes (SMBH) found at the centres of galaxies, and should also arise around IMBHs, especially in the dense stellar cores of CSS's. However, to date none have been observed in such environments. Using data from the Zwicky Transient Facility (ZTF) we search for TDEs associated with CSS, but …


Constraints On Metastable Superheavy Dark Matter Coupled To Sterile Neutrinos With The Pierre Auger Observatory, A. Abdul Halim, P. Abreu, M. Aglietta, I. Allekotte, K. Almeida Cheminant, A. Almela, B. Fick, K. Nguyen, D. Nitz, Et Al. Apr 2024

Constraints On Metastable Superheavy Dark Matter Coupled To Sterile Neutrinos With The Pierre Auger Observatory, A. Abdul Halim, P. Abreu, M. Aglietta, I. Allekotte, K. Almeida Cheminant, A. Almela, B. Fick, K. Nguyen, D. Nitz, Et Al.

Michigan Tech Publications, Part 2

Dark matter particles could be superheavy, provided their lifetime is much longer than the age of the Universe. Using the sensitivity of the Pierre Auger Observatory to ultrahigh energy neutrinos and photons, we constrain a specific extension of the Standard Model of particle physics that meets the lifetime requirement for a superheavy particle by coupling it to a sector of ultralight sterile neutrinos. Our results show that, for a typical dark coupling constant of 0.1, the mixing angle θm between active and sterile neutrinos must satisfy, roughly, θm≲1.5×10-6(MX/109 GeV)-2 for a mass MX of the dark-matter particle between 108 GeV …


Igniting Passion:​ A Detailed Journey Through Rocketry Course Activities, Krish M. Patel, Hannah Caycedo, Joshua Gage, Josi Maness, Kevin Park, Mufeng Shen Apr 2024

Igniting Passion:​ A Detailed Journey Through Rocketry Course Activities, Krish M. Patel, Hannah Caycedo, Joshua Gage, Josi Maness, Kevin Park, Mufeng Shen

SACAD: John Heinrichs Scholarly and Creative Activity Days

This course is a semester-long adventure in rocketry, led by Dr. Paul Adams. It covers everything about building and flying rockets, starting from the basics to more advanced rocketry. Students learn how to build rockets and use equipment used I payload systems like and altimeter and a GPS. We also learned about the importance of safety involved with building and launching rockets.


Dispersion Of Artificial Tracers In Ventilated Caves, Claudio Pastore, Eric Weber, Frédéric Doumenc, Pierre-Yves Jeannin, Marc Lütscher Apr 2024

Dispersion Of Artificial Tracers In Ventilated Caves, Claudio Pastore, Eric Weber, Frédéric Doumenc, Pierre-Yves Jeannin, Marc Lütscher

International Journal of Speleology

Artificial CO2 was used as a tracer along ventilated karst conduits to infer airflow and investigate tracer dispersion. In the karst vadose zone, cave ventilation is an efficient mode of transport for heat, gases and aerosols and thus drives the spatial distribution of airborne particles. Modelling this airborne transport requires geometrical and physical parameters of the conduit system, including the cross-sectional areas, the airflow and average air speed, as well as the longitudinal dispersion coefficient which describes the spreading of a solute. Four gauging tests were carried out in one mine (artificial conduit) and two ventilated caves (natural conduits). …


Search For Extreme Mass Ratio Inspirals Using Particle Swarm Optimization And Reduced Dimensionality Likelihoods, Xiao-Bo Zou, Soumya Mohanty, Hong-Gang Luo, Yu-Xiao Liu Apr 2024

Search For Extreme Mass Ratio Inspirals Using Particle Swarm Optimization And Reduced Dimensionality Likelihoods, Xiao-Bo Zou, Soumya Mohanty, Hong-Gang Luo, Yu-Xiao Liu

Physics and Astronomy Faculty Publications and Presentations

Extreme-mass-ratio inspirals (EMRIs) are significant observational targets for spaceborne gravitational wave detectors, namely, LISA, Taiji, and Tianqin, which involve the inspiral of stellar-mass compact objects into massive black holes (MBHs) with a mass range of approximately 104 ∼107𝑀⊙ . EMRIs are estimated to produce long-lived gravitational wave signals with more than 105 cycles before plunge, making them an ideal laboratory for exploring the strong-gravity properties of the spacetimes around the MBHs, stellar dynamics in galactic nuclei, and properties of the MBHs itself. However, the complexity of the waveform model, which involves the superposition of multiple harmonics, as well as the …


Non-Destructive Thickness Uniformity Measurement Of Photosensitive Gelatin Film, Clayton Halper Apr 2024

Non-Destructive Thickness Uniformity Measurement Of Photosensitive Gelatin Film, Clayton Halper

Physics Capstone Projects

Volume phase holographic gratings (VPHG’s) depend on dichromate gelatin of which uniform thickness is vital. The photosensitive nature of the film makes current thin film measurement devices not viable for production means. This project attempts to create a non-destructive measurement of photosensitive gelatin film used in VPHG production. Application of thin film interference at chosen wavelengths enable analysis of uniformity by comparison between the thin film inference patterns at different wavelengths. An initial proof of concept was established and a path towards a production ready device is outlined.


Low Cost Magnetometer Calibration And Distributed Simultaneous Multipoint Ionospheric Measurements From A Sounding Rocket Platform, Joshua W. Milford Apr 2024

Low Cost Magnetometer Calibration And Distributed Simultaneous Multipoint Ionospheric Measurements From A Sounding Rocket Platform, Joshua W. Milford

Doctoral Dissertations and Master's Theses

Low-cost and low-size-weight-and-power (SWaP) magnetometers can provide greater accessibility for distributed simultaneous measurements in the ionosphere, either onboard sounding rockets or on CubeSats. The Space and Atmospheric Instrumentation Laboratory (SAIL) at Embry-Riddle Aeronautical University has launched a multitude of sounding rockets in recent history: one night-time mid-latitude rocket from Wallops Flight Facility in August 2022 and three mid-latitude rockets from White Sands Missile Range during the October 2023 annular solar eclipse. All rockets had a comprehensive suite of instruments for electrodynamics and neutral dynamics measurements. Among this suite was one science-grade three-axis fluxgate magnetometer (Billingsley TFM65VQS / TFM100G2) and up …


Effects Of Heterogeneous Data Sets And Time-Lag Measurement Techniques On Cosmological Parameter Constraints From Mg Ii And C Iv Reverberation-Mapped Quasar Data, Shulei Cao, Michal Zajaček, Bożena Czerny, Swayamtrupta Panda, Bharat Ratra Apr 2024

Effects Of Heterogeneous Data Sets And Time-Lag Measurement Techniques On Cosmological Parameter Constraints From Mg Ii And C Iv Reverberation-Mapped Quasar Data, Shulei Cao, Michal Zajaček, Bożena Czerny, Swayamtrupta Panda, Bharat Ratra

Physics Faculty Publications and Presentations

Previously, we demonstrated that Mg II and C IV reverberation-mapped quasars (RM QSOs) are standardizable and that the cosmological parameters inferred using the broad-line region radius–luminosity (R–L) relation are consistent with those determined from better-established cosmological probes. With more data expected from ongoing and future spectroscopic and photometric surveys, it is imperative to examine how new QSO data sets of varied quality, with their own specific luminosity and time-delay distributions, can be best used to determine more restrictive cosmological parameter constraints. In this study, we test the effect of adding 25 OzDES Mg II RM QSOs as well …


The First Variational Formula, The Phase Space Of Solutions, And The Ostrogradsky Formalism, Matthew Pontius, Drew Watson Apr 2024

The First Variational Formula, The Phase Space Of Solutions, And The Ostrogradsky Formalism, Matthew Pontius, Drew Watson

Physics Capstone Projects

We consider Lagrangians for classical mechanics which depend upon an arbitrary number of time derivatives of the configuration variables. From the boundary term in the first variation of the Lagrangian we derive the Ostrogradsky formulas which define the Hamiltonian formulation of mechanical systems.


Modeling And Numerical Analysis Of The Cholesteric Landau-De Gennes Model, Andrew L. Hicks Apr 2024

Modeling And Numerical Analysis Of The Cholesteric Landau-De Gennes Model, Andrew L. Hicks

LSU Doctoral Dissertations

This thesis gives an analysis of modeling and numerical issues in the Landau-de Gennes (LdG) model of nematic liquid crystals (LCs) with cholesteric effects. We derive various time-step restrictions for a (weighted) $L^2$ gradient flow scheme to be energy decreasing. Furthermore, we prove a mesh size restriction, for finite element discretizations, that is critical to avoid spurious numerical artifacts in discrete minimizers that is not well-known in the LC literature, particularly when simulating cholesteric LCs that exhibit ``twist''. Furthermore, we perform a computational exploration of the model and present several numerical simulations in 3-D, on both slab geometries and spherical …