Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Old Dominion University

Series

Keyword
Publication Year
Publication

Articles 31 - 60 of 315

Full-Text Articles in Physical Sciences and Mathematics

Ict Security Tools And Techniques Among Higher Education Institutions: A Critical Review, Miko Nuñez, Xavier-Lewis Palmer, Lucas Potter, Chris Jordan Aliac, Lemuel Clark Velasco Jan 2023

Ict Security Tools And Techniques Among Higher Education Institutions: A Critical Review, Miko Nuñez, Xavier-Lewis Palmer, Lucas Potter, Chris Jordan Aliac, Lemuel Clark Velasco

Electrical & Computer Engineering Faculty Publications

Higher education institutions (HEIs) are increasingly relying on digital technologies for classroom and organizational management, but this puts them at higher risk for information and communication (ICT security attacks. Recent studies show that HEIs have experienced more security breaches in ICT security composed of both cybersecurity an information security. A literature review was conducted to identify common ICT security practices in HEIs over the last decade. 11 journal articles were profiled and analyzed, revealing threats to HEIs’ security and protective measures in terms of organizational security, technological security, physical security, and standards and frameworks. Security tools and techniques were grouped …


Commentary On Healthcare And Disruptive Innovation, Hilary Finch, Affia Abasi-Amefon, Woosub Jung, Lucas Potter, Xavier-Lewis Palmer Jan 2023

Commentary On Healthcare And Disruptive Innovation, Hilary Finch, Affia Abasi-Amefon, Woosub Jung, Lucas Potter, Xavier-Lewis Palmer

Electrical & Computer Engineering Faculty Publications

Exploits of technology have been an issue in healthcare for many years. Many hospital systems have a problem with “disruptive innovation” when introducing new technology. Disruptive innovation is “an innovation that creates a new market by applying a different set of values, which ultimately overtakes an existing market” (Sensmeier, 2012). Modern healthcare systems are historically slow to accept new technological advancements. This may be because patient-based, provider-based, or industry-wide decisions are tough to implement, giving way to dire consequences. One potential consequence is that healthcare providers may not be able to provide the best possible care to patients. For example, …


Light Auditor: Power Measurement Can Tell Private Data Leakage Through Iot Covert Channels, Woosub Jung, Kailai Cui, Kenneth Koltermann, Junjie Wang, Chunsheng Xin, Gang Zhou Jan 2023

Light Auditor: Power Measurement Can Tell Private Data Leakage Through Iot Covert Channels, Woosub Jung, Kailai Cui, Kenneth Koltermann, Junjie Wang, Chunsheng Xin, Gang Zhou

Electrical & Computer Engineering Faculty Publications

Despite many conveniences of using IoT devices, they have suffered from various attacks due to their weak security. Besides well-known botnet attacks, IoT devices are vulnerable to recent covert-channel attacks. However, no study to date has considered these IoT covert-channel attacks. Among these attacks, researchers have demonstrated exfiltrating users' private data by exploiting the smart bulb's capability of infrared emission.

In this paper, we propose a power-auditing-based system that defends the data exfiltration attack on the smart bulb as a case study. We first implement this infrared-based attack in a lab environment. With a newly-collected power consumption dataset, we pre-process …


Ultrasensitive Tapered Optical Fiber Refractive Index, Erem Ujah, Meimei Lai, Gymama Slaughter Jan 2023

Ultrasensitive Tapered Optical Fiber Refractive Index, Erem Ujah, Meimei Lai, Gymama Slaughter

Electrical & Computer Engineering Faculty Publications

Refractive index (RI) sensors are of great interest for label-free optical biosensing. A tapered optical fiber (TOF) RI sensor with micron-sized waist diameters can dramatically enhance sensor sensitivity by reducing the mode volume over a long distance. Here, a simple and fast method is used to fabricate highly sensitive refractive index sensors based on localized surface plasmon resonance (LSPR). Two TOFs (l = 5 mm) with waist diameters of 5 µm and 12 µm demonstrated sensitivity enhancement at λ = 1559 nm for glucose sensing (5-45 wt%) at room temperature. The optical power transmission decreased with increasing glucose concentration due …


View Synthesis With Scene Recognition For Cross-View Image Localization, Uddom Lee, Peng Jiang, Hongyi Wu, Chunsheng Xin Jan 2023

View Synthesis With Scene Recognition For Cross-View Image Localization, Uddom Lee, Peng Jiang, Hongyi Wu, Chunsheng Xin

Electrical & Computer Engineering Faculty Publications

Image-based localization has been widely used for autonomous vehicles, robotics, augmented reality, etc., and this is carried out by matching a query image taken from a cell phone or vehicle dashcam to a large scale of geo-tagged reference images, such as satellite/aerial images or Google Street Views. However, the problem remains challenging due to the inconsistency between the query images and the large-scale reference datasets regarding various light and weather conditions. To tackle this issue, this work proposes a novel view synthesis framework equipped with deep generative models, which can merge the unique features from the outdated reference dataset with …


Toward Real-Time, Robust Wearable Sensor Fall Detection Using Deep Learning Methods: A Feasibility Study, Haben Yhdego, Christopher Paolini, Michel Audette Jan 2023

Toward Real-Time, Robust Wearable Sensor Fall Detection Using Deep Learning Methods: A Feasibility Study, Haben Yhdego, Christopher Paolini, Michel Audette

Electrical & Computer Engineering Faculty Publications

Real-time fall detection using a wearable sensor remains a challenging problem due to high gait variability. Furthermore, finding the type of sensor to use and the optimal location of the sensors are also essential factors for real-time fall-detection systems. This work presents real-time fall-detection methods using deep learning models. Early detection of falls, followed by pneumatic protection, is one of the most effective means of ensuring the safety of the elderly. First, we developed and compared different data-segmentation techniques for sliding windows. Next, we implemented various techniques to balance the datasets because collecting fall datasets in the real-time setting has …


Opioid Use Disorder Prediction Using Machine Learning Of Fmri Data, A. Temtam, Liangsuo Ma, F. Gerard Moeller, M. S. Sadique, K. M. Iftekharuddin, Khan M. Iftekharuddin (Ed.), Weijie Chen (Ed.) Jan 2023

Opioid Use Disorder Prediction Using Machine Learning Of Fmri Data, A. Temtam, Liangsuo Ma, F. Gerard Moeller, M. S. Sadique, K. M. Iftekharuddin, Khan M. Iftekharuddin (Ed.), Weijie Chen (Ed.)

Electrical & Computer Engineering Faculty Publications

According to the Centers for Disease Control and Prevention (CDC) more than 932,000 people in the US have died since 1999 from a drug overdose. Just about 75% of drug overdose deaths in 2020 involved Opioid, which suggests that the US is in an Opioid overdose epidemic. Identifying individuals likely to develop Opioid use disorder (OUD) can help public health in planning effective prevention, intervention, drug overdose and recovery policies. Further, a better understanding of prediction of overdose leading to the neurobiology of OUD may lead to new therapeutics. In recent years, very limited work has been done using statistical …


Transfer Learning Using Infrared And Optical Full Motion Video Data For Gender Classification, Alexander M. Glandon, Joe Zalameda, Khan M. Iftekharuddin, Gabor F. Fulop (Ed.), David Z. Ting (Ed.), Lucy L. Zheng (Ed.) Jan 2023

Transfer Learning Using Infrared And Optical Full Motion Video Data For Gender Classification, Alexander M. Glandon, Joe Zalameda, Khan M. Iftekharuddin, Gabor F. Fulop (Ed.), David Z. Ting (Ed.), Lucy L. Zheng (Ed.)

Electrical & Computer Engineering Faculty Publications

This work is a review and extension of our ongoing research in human recognition analysis using multimodality motion sensor data. We review our work on hand crafted feature engineering for motion capture skeleton (MoCap) data, from the Air Force Research Lab for human gender followed by depth scan based skeleton extraction using LIDAR data from the Army Night Vision Lab for person identification. We then build on these works to demonstrate a transfer learning sensor fusion approach for using the larger MoCap and smaller LIDAR data for gender classification.


A Survey Of Using Machine Learning In Iot Security And The Challenges Faced By Researchers, Khawlah M. Harahsheh, Chung-Hao Chen Jan 2023

A Survey Of Using Machine Learning In Iot Security And The Challenges Faced By Researchers, Khawlah M. Harahsheh, Chung-Hao Chen

Electrical & Computer Engineering Faculty Publications

The Internet of Things (IoT) has become more popular in the last 15 years as it has significantly improved and gained control in multiple fields. We are nowadays surrounded by billions of IoT devices that directly integrate with our lives, some of them are at the center of our homes, and others control sensitive data such as military fields, healthcare, and datacenters, among others. This popularity makes factories and companies compete to produce and develop many types of those devices without caring about how secure they are. On the other hand, IoT is considered a good insecure environment for cyber …


Special Section Editorial: Artificial Intelligence For Medical Imaging In Clinical Practice, Claudia Mello-Thoms, Karen Drukker, Sian Taylor-Phillips, Khan Iftekharuddin, Marios Gavrielides Jan 2023

Special Section Editorial: Artificial Intelligence For Medical Imaging In Clinical Practice, Claudia Mello-Thoms, Karen Drukker, Sian Taylor-Phillips, Khan Iftekharuddin, Marios Gavrielides

Electrical & Computer Engineering Faculty Publications

This editorial introduces the JMI Special Section on Artificial Intelligence for Medical Imaging in Clinical Practice.


A Reflection Of Typology And Verification Flaws In Consideration Of Biocybersecurity/Cyberbiosecurity: Just Another Gap In The Wall, Luke Potter, Kim Mossberg, Xavier Palmer Jan 2023

A Reflection Of Typology And Verification Flaws In Consideration Of Biocybersecurity/Cyberbiosecurity: Just Another Gap In The Wall, Luke Potter, Kim Mossberg, Xavier Palmer

Electrical & Computer Engineering Faculty Publications

Verification is central to any process in a functional and enduring cyber-secure organization. This verification is how the validity or accuracy of a state of being is assessed (Schlick, 1936; Balci, 1998). Conversely, breakdown in verification procedures is core to the interruption of normal operations for an organization. A key problem for organizations that utilize biology as an interlock within their systems is that personnel lack sufficient ability to verify all practically relevant biological information for procedures such as a nurse logging a blood draw, or a molecular biology technician preparing agar to culture microbes for study. This has several …


Design And Commissioning Of An E-Beam Irradiation Beamline At The Upgraded Injector Test Facility At Jefferson Lab, Xi Li, Helmut Baumgart, Charles Bott, Gianluigi Ciovati, Shaun Gregory, Fay Hannon, Mike Mccaughan, Robert Pearce, Matthew Poelker, Hannes Vennekate, Shaoheng Wang Jun 2022

Design And Commissioning Of An E-Beam Irradiation Beamline At The Upgraded Injector Test Facility At Jefferson Lab, Xi Li, Helmut Baumgart, Charles Bott, Gianluigi Ciovati, Shaun Gregory, Fay Hannon, Mike Mccaughan, Robert Pearce, Matthew Poelker, Hannes Vennekate, Shaoheng Wang

Electrical & Computer Engineering Faculty Publications

The Upgraded Injector Test Facility (UITF) at Jefferson Lab is a continuous-wave superconducting linear accelerator capable of providing an electron beam with energy up to 10 MeV. A beamline for electron-beam irradiation has been designed, installed and successfully commissioned at this facility, aimed at the degradation study of 1,4-dioxane and per- and polyfluoroalkyl substances (PFAS) in wastewater treatment. A solenoid with a peak axial magnetic field of up to 0.28 T and a set of raster coils were used to obtain a Gaussian beam profile with a transverse standard deviation of ∼15.0 mm at the target location. Monte-Carlo simulations using …


Runtime Energy Savings Based On Machine Learning Models For Multicore Applications, Vaibhav Sundriyal, Masha Sosonkina Jun 2022

Runtime Energy Savings Based On Machine Learning Models For Multicore Applications, Vaibhav Sundriyal, Masha Sosonkina

Electrical & Computer Engineering Faculty Publications

To improve the power consumption of parallel applications at the runtime, modern processors provide frequency scaling and power limiting capabilities. In this work, a runtime strategy is proposed to maximize energy savings under a given performance degradation. Machine learning techniques were utilized to develop performance models which would provide accurate performance prediction with change in operating core-uncore frequency. Experiments, performed on a node (28 cores) of a modern computing platform showed significant energy savings of as much as 26% with performance degradation of as low as 5% under the proposed strategy compared with the execution in the unlimited power case.


Foundations Of Plasmas For Medical Applications, T. Von Woedtke, Mounir Laroussi, M. Gherardi May 2022

Foundations Of Plasmas For Medical Applications, T. Von Woedtke, Mounir Laroussi, M. Gherardi

Electrical & Computer Engineering Faculty Publications

Plasma medicine refers to the application of nonequilibrium plasmas at approximately body temperature, for therapeutic purposes. Nonequilibrium plasmas are weakly ionized gases which contain charged and neutral species and electric fields, and emit radiation, particularly in the visible and ultraviolet range. Medically-relevant cold atmospheric pressure plasma (CAP) sources and devices are usually dielectric barrier discharges and nonequilibrium atmospheric pressure plasma jets. Plasma diagnostic methods and modelling approaches are used to characterize the densities and fluxes of active plasma species and their interaction with surrounding matter. In addition to the direct application of plasma onto living tissue, the treatment of liquids …


Understanding The Mechanism Of Deep Learning Frameworks In Lesion Detection For Pathological Images With Breast Cancer, Wei-Wen Hsu, Chung-Hao Chen, Chang Hao, Yu-Ling Hou, Xiang Gao, Yun Shao, Xueli Zhang, Jingjing Wang, Tao He, Yanhong Tai Apr 2022

Understanding The Mechanism Of Deep Learning Frameworks In Lesion Detection For Pathological Images With Breast Cancer, Wei-Wen Hsu, Chung-Hao Chen, Chang Hao, Yu-Ling Hou, Xiang Gao, Yun Shao, Xueli Zhang, Jingjing Wang, Tao He, Yanhong Tai

Electrical & Computer Engineering Faculty Publications

With the advances of scanning sensors and deep learning algorithms, computational pathology has drawn much attention in recent years and started to play an important role in the clinical workflow. Computer-aided detection (CADe) systems have been developed to assist pathologists in slide assessment, increasing diagnosis efficiency and reducing misdetections. In this study, we conducted four experiments to demonstrate that the features learned by deep learning models are interpretable from a pathological perspective. In addition, classifiers such as the support vector machine (SVM) and random forests (RF) were used in experiments to replace the fully connected layers and decompose the end-to-end …


On The Use Of High-Frequency Surface Wave Oceanographic Research Radars As Bistatic Single-Frequency Oblique Ionospheric Sounders, Stephen R. Kaeppler, Ethan S. Miller, Daniel Cole, Teresa Updyke Jan 2022

On The Use Of High-Frequency Surface Wave Oceanographic Research Radars As Bistatic Single-Frequency Oblique Ionospheric Sounders, Stephen R. Kaeppler, Ethan S. Miller, Daniel Cole, Teresa Updyke

CCPO Publications

We demonstrate that bistatic reception of high-frequency oceanographic radars can be used as single-frequency oblique ionospheric sounders. We develop methods that are agnostic of the software-defined radio system to estimate the group range from the bistatic observations. The group range observations are used to estimate the virtual height and equivalent vertical frequency at the midpoint of the oblique propagation path. Uncertainty estimates of the virtual height and equivalent vertical frequency are presented. We apply this analysis to observations collected from two experiments run at two locations in different years, but utilizing similar software-defined radio data collection systems. In the first …


Runtime Power Allocation Based On Multi-Gpu Utilization In Gamess, Masha Sosonkina, Vaibhav Sundriyal, Jorge Luis Galvez Vallejo Jan 2022

Runtime Power Allocation Based On Multi-Gpu Utilization In Gamess, Masha Sosonkina, Vaibhav Sundriyal, Jorge Luis Galvez Vallejo

Electrical & Computer Engineering Faculty Publications

To improve the power consumption of parallel applications at the runtime, modern processors provide frequency scaling and power limiting capabilities. In this work, a runtime strategy is proposed to maximize performance under a given power budget by distributing the available power according to the relative GPU utilization. Time series forecasting methods were used to develop workload prediction models that provide accurate prediction of GPU utilization during application execution. Experiments were performed on a multi-GPU computing platform DGX-1 equipped with eight NVIDIA V100 GPUs used for quantum chemistry calculations in the GAMESS package. For a limited power budget, the proposed strategy …


A Channel State Information Based Virtual Mac Spoofing Detector, Peng Jiang, Hongyi Wu, Chunsheng Xin Jan 2022

A Channel State Information Based Virtual Mac Spoofing Detector, Peng Jiang, Hongyi Wu, Chunsheng Xin

Electrical & Computer Engineering Faculty Publications

Physical layer security has attracted lots of attention with the expansion of wireless devices to the edge networks in recent years. Due to limited authentication mechanisms, MAC spoofing attack, also known as the identity attack, threatens wireless systems. In this paper, we study a new type of MAC spoofing attack, the virtual MAC spoofing attack, in a tight environment with strong spatial similarities, which can create multiple counterfeits entities powered by the virtualization technologies to interrupt regular services. We develop a system to effectively detect such virtual MAC spoofing attacks via the deep learning method as a countermeasure. …


Arithfusion: An Arithmetic Deep Model For Temporal Remote Sensing Image Fusion, Md Reshad Ul Hoque, Jian Wu, Chiman Kwan, Krzysztof Koperski, Jiang Li Jan 2022

Arithfusion: An Arithmetic Deep Model For Temporal Remote Sensing Image Fusion, Md Reshad Ul Hoque, Jian Wu, Chiman Kwan, Krzysztof Koperski, Jiang Li

Electrical & Computer Engineering Faculty Publications

Different satellite images may consist of variable numbers of channels which have different resolutions, and each satellite has a unique revisit period. For example, the Landsat-8 satellite images have 30 m resolution in their multispectral channels, the Sentinel-2 satellite images have 10 m resolution in the pan-sharp channel, and the National Agriculture Imagery Program (NAIP) aerial images have 1 m resolution. In this study, we propose a simple yet effective arithmetic deep model for multimodal temporal remote sensing image fusion. The proposed model takes both low- and high-resolution remote sensing images at t1 together with low-resolution images at a …


Qu-Brats: Miccai Brats 2020 Challenge On Quantifying Uncertainty In Brain Tumor Segmentation - Analysis Of Ranking Scores And Benchmarking Results, Raghav Mehta, Angelos Filos, Ujjwal Baid, Chiharu Sako, Richard Mckinley, Michael Rebsamen, Katrin Dätwyler, Raphael Meier, Piotr Radojewski, Gowtham Krishnan Murugesan, Sahil Nalawade, Chandan Ganesh, Ben Wagner, Fang F. Yu, Baowei Fei, Ananth J. Madhuranthakam, Joseph A. Maldjian, Laura Daza, Catalina Gómez, Pablo Arbeláez, Chengliang Dai, Shuo Wang, Hadrien Reynaud, Yuan-Han Mo, Elsa Angelini, Yike Guo, Wenjia Bai, Subhashis Banerjee, Lin-Min Pei, Murat Ak, Sarahi Rosas-González, Ilyess Zemmoura, Clovis Tauber, Minh H. Vu, Tufve Nyholm, Tommy Löfstedt, Laura Mora Ballestar, Veronica Vilaplana, Hugh Mchugh, Gonzalo Maso Talou, Alan Wang, Jay Patel, Ken Chang, Katharina Hoebel, Mishka Gidwani, Nishanth Arun, Sharut Gupta, Mehak Aggarwal, Praveer Singh, Elizabeth R. Gerstner, Jayashree Kalpathy-Cramer, Nicholas Boutry, Alexis Huard, Lasitha Vidyaratne, Md. Monibor Rahman, Khan M. Iftekharuddin, Joseph Chazalon, Elodie Puybareau, Guillaume Tochon, Jun Ma, Mariano Cabezas, Xavier Llado, Arnau Oliver, Liliana Valencia, Sergi Valverde, Mehdi Amian, Mohammadreza Soltaninejad, Andriy Myronenko, Ali Hatamizadeh, Xue Feng, Quan Dou, Nicholas Tustison, Craig Meyer, Nisarg A. Shah, Sanjay Talbar, Marc-André Weber, Abhishek Mahajan, Andras Jakab, Roland Wiest, Hassan M. Fathallah-Shaykh, Arash Nazeri, Mikhail Milchenko1, Daniel Marcus, Aikaterini Kotrotsou, Rivka Colen, John Freymann, Justin Kirby, Christos Davatzikos, Bjoern Menze, Spyridon Bakas, Yarin Gal, Tal Arbel Jan 2022

Qu-Brats: Miccai Brats 2020 Challenge On Quantifying Uncertainty In Brain Tumor Segmentation - Analysis Of Ranking Scores And Benchmarking Results, Raghav Mehta, Angelos Filos, Ujjwal Baid, Chiharu Sako, Richard Mckinley, Michael Rebsamen, Katrin Dätwyler, Raphael Meier, Piotr Radojewski, Gowtham Krishnan Murugesan, Sahil Nalawade, Chandan Ganesh, Ben Wagner, Fang F. Yu, Baowei Fei, Ananth J. Madhuranthakam, Joseph A. Maldjian, Laura Daza, Catalina Gómez, Pablo Arbeláez, Chengliang Dai, Shuo Wang, Hadrien Reynaud, Yuan-Han Mo, Elsa Angelini, Yike Guo, Wenjia Bai, Subhashis Banerjee, Lin-Min Pei, Murat Ak, Sarahi Rosas-González, Ilyess Zemmoura, Clovis Tauber, Minh H. Vu, Tufve Nyholm, Tommy Löfstedt, Laura Mora Ballestar, Veronica Vilaplana, Hugh Mchugh, Gonzalo Maso Talou, Alan Wang, Jay Patel, Ken Chang, Katharina Hoebel, Mishka Gidwani, Nishanth Arun, Sharut Gupta, Mehak Aggarwal, Praveer Singh, Elizabeth R. Gerstner, Jayashree Kalpathy-Cramer, Nicholas Boutry, Alexis Huard, Lasitha Vidyaratne, Md. Monibor Rahman, Khan M. Iftekharuddin, Joseph Chazalon, Elodie Puybareau, Guillaume Tochon, Jun Ma, Mariano Cabezas, Xavier Llado, Arnau Oliver, Liliana Valencia, Sergi Valverde, Mehdi Amian, Mohammadreza Soltaninejad, Andriy Myronenko, Ali Hatamizadeh, Xue Feng, Quan Dou, Nicholas Tustison, Craig Meyer, Nisarg A. Shah, Sanjay Talbar, Marc-André Weber, Abhishek Mahajan, Andras Jakab, Roland Wiest, Hassan M. Fathallah-Shaykh, Arash Nazeri, Mikhail Milchenko1, Daniel Marcus, Aikaterini Kotrotsou, Rivka Colen, John Freymann, Justin Kirby, Christos Davatzikos, Bjoern Menze, Spyridon Bakas, Yarin Gal, Tal Arbel

Electrical & Computer Engineering Faculty Publications

Deep learning (DL) models have provided the state-of-the-art performance in a wide variety of medical imaging benchmarking challenges, including the Brain Tumor Segmentation (BraTS) challenges. However, the task of focal pathology multi-compartment segmentation (e.g., tumor and lesion sub-regions) is particularly challenging, and potential errors hinder the translation of DL models into clinical workflows. Quantifying the reliability of DL model predictions in the form of uncertainties, could enable clinical review of the most uncertain regions, thereby building trust and paving the way towards clinical translation. Recently, a number of uncertainty estimation methods have been introduced for DL medical image segmentation tasks. …


Segmenting Technical Drawing Figures In Us Patents, Md Reshad Ul Hoque, Xin Wei, Muntabir Hasan Choudhury, Kehinde Ajayi, Martin Gryder, Jian Wu, Diane Oyen Jan 2022

Segmenting Technical Drawing Figures In Us Patents, Md Reshad Ul Hoque, Xin Wei, Muntabir Hasan Choudhury, Kehinde Ajayi, Martin Gryder, Jian Wu, Diane Oyen

Computer Science Faculty Publications

Image segmentation is the core computer vision problem for identifying objects within a scene. Segmentation is a challenging task because the prediction for each pixel label requires contextual information. Most recent research deals with the segmentation of natural images rather than drawings. However, there is very little research on sketched image segmentation. In this study, we introduce heuristic (point-shooting) and deep learning-based methods (U-Net, HR-Net, MedT, DETR) to segment technical drawings in US patent documents. Our proposed methods on the US Patent dataset achieved over 90% accuracy where transformer performs well with 97% segmentation accuracy, which is promising and computationally …


Security Hardening Of Intelligent Reflecting Surfaces Against Adversarial Machine Learning Attacks, Ferhat Ozgur Catak, Murat Kuzlu, Haolin Tang, Evren Catak, Yanxiao Zhao Jan 2022

Security Hardening Of Intelligent Reflecting Surfaces Against Adversarial Machine Learning Attacks, Ferhat Ozgur Catak, Murat Kuzlu, Haolin Tang, Evren Catak, Yanxiao Zhao

Engineering Technology Faculty Publications

Next-generation communication networks, also known as NextG or 5G and beyond, are the future data transmission systems that aim to connect a large amount of Internet of Things (IoT) devices, systems, applications, and consumers at high-speed data transmission and low latency. Fortunately, NextG networks can achieve these goals with advanced telecommunication, computing, and Artificial Intelligence (AI) technologies in the last decades and support a wide range of new applications. Among advanced technologies, AI has a significant and unique contribution to achieving these goals for beamforming, channel estimation, and Intelligent Reflecting Surfaces (IRS) applications of 5G and beyond networks. However, the …


Defensive Distillation-Based Adversarial Attack Mitigation Method For Channel Estimation Using Deep Learning Models In Next-Generation Wireless Networks, Ferhat Ozgur Catak, Murat Kuzlu, Evren Catak, Umit Cali, Ozgur Guler Jan 2022

Defensive Distillation-Based Adversarial Attack Mitigation Method For Channel Estimation Using Deep Learning Models In Next-Generation Wireless Networks, Ferhat Ozgur Catak, Murat Kuzlu, Evren Catak, Umit Cali, Ozgur Guler

Engineering Technology Faculty Publications

Future wireless networks (5G and beyond), also known as Next Generation or NextG, are the vision of forthcoming cellular systems, connecting billions of devices and people together. In the last decades, cellular networks have dramatically grown with advanced telecommunication technologies for high-speed data transmission, high cell capacity, and low latency. The main goal of those technologies is to support a wide range of new applications, such as virtual reality, metaverse, telehealth, online education, autonomous and flying vehicles, smart cities, smart grids, advanced manufacturing, and many more. The key motivation of NextG networks is to meet the high demand for those …


Recent Advancements In Electrochemical Conversion Of Carbon Dioxide, Nandan Nag, Amit Kumar, Sumit Sharma, Sandeep Kumar, Amit K. Thakur Jan 2022

Recent Advancements In Electrochemical Conversion Of Carbon Dioxide, Nandan Nag, Amit Kumar, Sumit Sharma, Sandeep Kumar, Amit K. Thakur

Civil & Environmental Engineering Faculty Publications

Electrochemical reduction of carbon dioxide into eco-friendly and clean products is a promising approach to eradicate pollution. Although carbon dioxide emission is inhibited by the advent of renewable sources of energy, it is present in the atmosphere and needs to be cleaned. The reduction of carbon dioxide from atmospheric gases can be accomplished by its adsorption and subsequent transportation to electrolytic chambers, where it is reduced to hydrocarbons, organic acids or carbonates. This review focuses on developing a three compartment electrochemical cell to reduce carbon dioxide used as a catholyte. Various factors affecting the electrochemical reduction of carbon dioxide and …


Nonlinear Meissner Effect In Nb3Sn Coplanar Resonators, Junki Makita, C. Sundahl, Gianluigi Ciovati, C. B. Eom, Alex Gurevich Jan 2022

Nonlinear Meissner Effect In Nb3Sn Coplanar Resonators, Junki Makita, C. Sundahl, Gianluigi Ciovati, C. B. Eom, Alex Gurevich

Physics Faculty Publications

We investigated the nonlinear Meissner effect (NLME) in Nb3Sn thin-film coplanar resonators by measuring the resonance frequency as a function of a parallel magnetic field at different temperatures. We used low rf power probing in films thinner than the London penetration depth λ(B) to significantly increase the field onset of vortex penetration and measure the NLME under equilibrium conditions. Contrary to the conventional quadratic increase of λ(B) with B expected in s-wave superconductors, we observed a nearly linear increase of the penetration depth with B. We concluded that this behavior of λ(B) is due to weak linked grain …


Security Concerns On Machine Learning Solutions For 6g Networks In Mmwave Beam Prediction, Ferhat Ozgur Catak, Murat Kuzlu, Evren Catak, Umit Cali, Devrim Unal Jan 2022

Security Concerns On Machine Learning Solutions For 6g Networks In Mmwave Beam Prediction, Ferhat Ozgur Catak, Murat Kuzlu, Evren Catak, Umit Cali, Devrim Unal

Engineering Technology Faculty Publications

6G – sixth generation – is the latest cellular technology currently under development for wireless communication systems. In recent years, machine learning (ML) algorithms have been applied widely in various fields, such as healthcare, transportation, energy, autonomous cars, and many more. Those algorithms have also been used in communication technologies to improve the system performance in terms of frequency spectrum usage, latency, and security. With the rapid developments of ML techniques, especially deep learning (DL), it is critical to consider the security concern when applying the algorithms. While ML algorithms offer significant advantages for 6G networks, security concerns on artificial …


Real-Time Cavity Fault Prediction In Cebaf Using Deep Learning, Md. M. Rahman, K. Iftekharuddin, A. Carptenter, T. Mcguckin, C. Tennant, L. Vidyaratne, Sandra Biedron (Ed.), Evgenya Simakov (Ed.), Stephen Milton (Ed.), Petr M. Anisimov (Ed.), Volker R.W. Schaa (Ed.) Jan 2022

Real-Time Cavity Fault Prediction In Cebaf Using Deep Learning, Md. M. Rahman, K. Iftekharuddin, A. Carptenter, T. Mcguckin, C. Tennant, L. Vidyaratne, Sandra Biedron (Ed.), Evgenya Simakov (Ed.), Stephen Milton (Ed.), Petr M. Anisimov (Ed.), Volker R.W. Schaa (Ed.)

Electrical & Computer Engineering Faculty Publications

Data-driven prediction of future faults is a major research area for many industrial applications. In this work, we present a new procedure of real-time fault prediction for superconducting radio-frequency (SRF) cavities at the Continuous Electron Beam Accelerator Facility (CEBAF) using deep learning. CEBAF has been afflicted by frequent downtime caused by SRF cavity faults. We perform fault prediction using pre-fault RF signals from C100-type cryomodules. Using the pre-fault signal information, the new algorithm predicts the type of cavity fault before the actual onset. The early prediction may enable potential mitigation strategies to prevent the fault. In our work, we apply …


Hybridization From Guest-Host Interactions Reduces The Thermal Conductivity Of Metal-Organic Frameworks, Mallory E. Decoster, Hasan Babaei, Sangeun S. Jung, Zeinab M. Hassan, John T. Gaskins, Ashutosh Giri, Emma M. Tiernan, John A. Tomko, Helmut Baumgart, Pamela M. Norris, Alan J.H. Mcgaughey, Christopher E. Wilmer, Engelbert Redel, Gaurav Giri, Patrick E. Hopkins Jan 2022

Hybridization From Guest-Host Interactions Reduces The Thermal Conductivity Of Metal-Organic Frameworks, Mallory E. Decoster, Hasan Babaei, Sangeun S. Jung, Zeinab M. Hassan, John T. Gaskins, Ashutosh Giri, Emma M. Tiernan, John A. Tomko, Helmut Baumgart, Pamela M. Norris, Alan J.H. Mcgaughey, Christopher E. Wilmer, Engelbert Redel, Gaurav Giri, Patrick E. Hopkins

Electrical & Computer Engineering Faculty Publications

We experimentally and theoretically investigate the thermal conductivity and mechanical properties of polycrystalline HKUST-1 metal–organic frameworks (MOFs) infiltrated with three guest molecules: tetracyanoquinodimethane (TCNQ), 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ), and (cyclohexane-1,4-diylidene)dimalononitrile (H4-TCNQ). This allows for modification of the interaction strength between the guest and host, presenting an opportunity to study the fundamental atomic scale mechanisms of how guest molecules impact the thermal conductivity of large unit cell porous crystals. The thermal conductivities of the guest@MOF systems decrease significantly, by on average a factor of 4, for all infiltrated samples as compared to the uninfiltrated, pristine HKUST-1. This reduction in thermal conductivity goes in …


Bitcoin Selfish Mining Modeling And Dependability Analysis, Chencheng Zhou, Liudong Xing, Jun Guo, Qisi Liu Jan 2022

Bitcoin Selfish Mining Modeling And Dependability Analysis, Chencheng Zhou, Liudong Xing, Jun Guo, Qisi Liu

Electrical & Computer Engineering Faculty Publications

Blockchain technology has gained prominence over the last decade. Numerous achievements have been made regarding how this technology can be utilized in different aspects of the industry, market, and governmental departments. Due to the safety-critical and security-critical nature of their uses, it is pivotal to model the dependability of blockchain-based systems. In this study, we focus on Bitcoin, a blockchain-based peer-to-peer cryptocurrency system. A continuous-time Markov chain-based analytical method is put forward to model and quantify the dependability of the Bitcoin system under selfish mining attacks. Numerical results are provided to examine the influences of several key parameters related to …


Using Skeleton Correction To Improve Flash Lidar-Based Gait Recognition, Nasrin Sadeghzadehyazdi, Tamal Batabyal, Alexander Glandon, Nibir Dhar, Babajide Familoni, Khan Iftekharuddin, Scott T. Acton Jan 2022

Using Skeleton Correction To Improve Flash Lidar-Based Gait Recognition, Nasrin Sadeghzadehyazdi, Tamal Batabyal, Alexander Glandon, Nibir Dhar, Babajide Familoni, Khan Iftekharuddin, Scott T. Acton

Electrical & Computer Engineering Faculty Publications

This paper presents GlidarPoly, an efficacious pipeline of 3D gait recognition for flash lidar data based on pose estimation and robust correction of erroneous and missing joint measurements. A flash lidar can provide new opportunities for gait recognition through a fast acquisition of depth and intensity data over an extended range of distance. However, the flash lidar data are plagued by artifacts, outliers, noise, and sometimes missing measurements, which negatively affects the performance of existing analytics solutions. We present a filtering mechanism that corrects noisy and missing skeleton joint measurements to improve gait recognition. Furthermore, robust statistics are integrated with …