Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physical Sciences and Mathematics

Urban Flood Extent Segmentation And Evaluation From Real-World Surveillance Camera Images Using Deep Convolutional Neural Network, Yidi Wang, Yawen Shen, Behrouz Salahshour, Mecit Cetin, Khan Iftekharuddin, Navid Tahvildari, Guoping Huang, Devin K. Harris, Kwame Ampofo, Jonathan L. Goodall Jan 2024

Urban Flood Extent Segmentation And Evaluation From Real-World Surveillance Camera Images Using Deep Convolutional Neural Network, Yidi Wang, Yawen Shen, Behrouz Salahshour, Mecit Cetin, Khan Iftekharuddin, Navid Tahvildari, Guoping Huang, Devin K. Harris, Kwame Ampofo, Jonathan L. Goodall

Civil & Environmental Engineering Faculty Publications

This study explores the use of Deep Convolutional Neural Network (DCNN) for semantic segmentation of flood images. Imagery datasets of urban flooding were used to train two DCNN-based models, and camera images were used to test the application of the models with real-world data. Validation results show that both models extracted flood extent with a mean F1-score over 0.9. The factors that affected the performance included still water surface with specular reflection, wet road surface, and low illumination. In testing, reduced visibility during a storm and raindrops on surveillance cameras were major problems that affected the segmentation of flood extent. …


Designing High-Performance Identity-Based Quantum Signature Protocol With Strong Security, Sunil Prajapat, Pankaj Kumar, Sandeep Kumar, Ashok Kumar Das, Sachin Shetty, M. Shamim Hossain Jan 2024

Designing High-Performance Identity-Based Quantum Signature Protocol With Strong Security, Sunil Prajapat, Pankaj Kumar, Sandeep Kumar, Ashok Kumar Das, Sachin Shetty, M. Shamim Hossain

VMASC Publications

Due to the rapid advancement of quantum computers, there has been a furious race for quantum technologies in academia and industry. Quantum cryptography is an important tool for achieving security services during quantum communication. Designated verifier signature, a variant of quantum cryptography, is very useful in applications like the Internet of Things (IoT) and auctions. An identity-based quantum-designated verifier signature (QDVS) scheme is suggested in this work. Our protocol features security attributes like eavesdropping, non-repudiation, designated verification, and hiding sources attacks. Additionally, it is protected from attacks on forgery, inter-resending, and impersonation. The proposed scheme benefits from the traditional designated …


A Survey On Few-Shot Class-Incremental Learning, Songsong Tian, Lusi Li, Weijun Li, Hang Ran, Xin Ning, Prayag Tiwari Jan 2024

A Survey On Few-Shot Class-Incremental Learning, Songsong Tian, Lusi Li, Weijun Li, Hang Ran, Xin Ning, Prayag Tiwari

Computer Science Faculty Publications

Large deep learning models are impressive, but they struggle when real-time data is not available. Few-shot class-incremental learning (FSCIL) poses a significant challenge for deep neural networks to learn new tasks from just a few labeled samples without forgetting the previously learned ones. This setup can easily leads to catastrophic forgetting and overfitting problems, severely affecting model performance. Studying FSCIL helps overcome deep learning model limitations on data volume and acquisition time, while improving practicality and adaptability of machine learning models. This paper provides a comprehensive survey on FSCIL. Unlike previous surveys, we aim to synthesize few-shot learning and incremental …


A Chinese Power Text Classification Algorithm Based On Deep Active Learning, Song Deng, Qianliang Li, Renjie Dai, Siming Wei, Di Wu, Yi He, Xindong Wu Jan 2024

A Chinese Power Text Classification Algorithm Based On Deep Active Learning, Song Deng, Qianliang Li, Renjie Dai, Siming Wei, Di Wu, Yi He, Xindong Wu

Computer Science Faculty Publications

The construction of knowledge graph is beneficial for grid production, electrical safety protection, fault diagnosis and traceability in an observable and controllable way. Highly-precision text classification algorithm is crucial to build a professional knowledge graph in power system. Unfortunately, there are a large number of poorly described and specialized texts in the power business system, and the amount of data containing valid labels in these texts is low. This will bring great challenges to improve the precision of text classification models. To offset the gap, we propose a classification algorithm for Chinese text in the power system based on deep …


Photoluminescence Switching In Quantum Dots Connected With Fluorinated And Hydrogenated Photochromic Molecules, Ephraiem S. Sarabamoun, Jonathan M. Bietsch, Pramod Aryal, Amelia G. Reid, Maurice Curran, Grayson Johnson, Esther H. R. Tsai, Charles W. Machan, Guijun Wang, Joshua J. Choi Jan 2024

Photoluminescence Switching In Quantum Dots Connected With Fluorinated And Hydrogenated Photochromic Molecules, Ephraiem S. Sarabamoun, Jonathan M. Bietsch, Pramod Aryal, Amelia G. Reid, Maurice Curran, Grayson Johnson, Esther H. R. Tsai, Charles W. Machan, Guijun Wang, Joshua J. Choi

Chemistry & Biochemistry Faculty Publications

We investigate switching of photoluminescence (PL) from PbS quantum dots (QDs) crosslinked with two different types of photochromic diarylethene molecules, 4,4'-(1-cyclopentene-1,2-diyl)bis[5-methyl-2-thiophenecarboxylic acid] (1H) and 4,4'-(1-perfluorocyclopentene-1,2-diyl)bis[5-methyl-2-thiophenecarboxylic acid] (2F). Our results show that the QDs crosslinked with the hydrogenated molecule (1H) exhibit a greater amount of switching in photoluminescence intensity compared to QDs crosslinked with the fluorinated molecule (2F). With a combination of differential pulse voltammetry and density functional theory, we attribute the different amount of PL switching to the different energy levels between 1H and 2F molecules which result in different potential barrier …


Decompositions Of Nonlinear Input-Output Systems To Zero The Output, W. Steven Gray, Kurusch Ebrahimi-Fard, Alexander Schmeding Jan 2024

Decompositions Of Nonlinear Input-Output Systems To Zero The Output, W. Steven Gray, Kurusch Ebrahimi-Fard, Alexander Schmeding

Electrical & Computer Engineering Faculty Publications

Consider an input–output system where the output is the tracking error given some desired reference signal. It is natural to consider under what conditions the problem has an exact solution, that is, the tracking error is exactly the zero function. If the system has a well defined relative degree and the zero function is in the range of the input–output map, then it is well known that the system is locally left invertible, and thus, the problem has a unique exact solution. A system will fail to have relative degree when more than one exact solution exists. The general goal …


Using Feature Selection Enhancement To Evaluate Attack Detection In The Internet Of Things Environment, Khawlah Harahsheh, Rami Al-Naimat, Chung-Hao Chen Jan 2024

Using Feature Selection Enhancement To Evaluate Attack Detection In The Internet Of Things Environment, Khawlah Harahsheh, Rami Al-Naimat, Chung-Hao Chen

Electrical & Computer Engineering Faculty Publications

The rapid evolution of technology has given rise to a connected world where billions of devices interact seamlessly, forming what is known as the Internet of Things (IoT). While the IoT offers incredible convenience and efficiency, it presents a significant challenge to cybersecurity and is characterized by various power, capacity, and computational process limitations. Machine learning techniques, particularly those encompassing supervised classification techniques, offer a systematic approach to training models using labeled datasets. These techniques enable intrusion detection systems (IDSs) to discern patterns indicative of potential attacks amidst the vast amounts of IoT data. Our investigation delves into various aspects …


Sub-Band Backdoor Attack In Remote Sensing Imagery, Kazi Aminul Islam, Hongyi Wu, Chunsheng Xin, Rui Ning, Liuwan Zhu, Jiang Li Jan 2024

Sub-Band Backdoor Attack In Remote Sensing Imagery, Kazi Aminul Islam, Hongyi Wu, Chunsheng Xin, Rui Ning, Liuwan Zhu, Jiang Li

Electrical & Computer Engineering Faculty Publications

Remote sensing datasets usually have a wide range of spatial and spectral resolutions. They provide unique advantages in surveillance systems, and many government organizations use remote sensing multispectral imagery to monitor security-critical infrastructures or targets. Artificial Intelligence (AI) has advanced rapidly in recent years and has been widely applied to remote image analysis, achieving state-of-the-art (SOTA) performance. However, AI models are vulnerable and can be easily deceived or poisoned. A malicious user may poison an AI model by creating a stealthy backdoor. A backdoored AI model performs well on clean data but behaves abnormally when a planted trigger appears in …


Domain Adaptive Federated Learning For Multi-Institution Molecular Mutation Prediction And Bias Identification, W. Farzana, M. A. Witherow, I. Longoria, M. S. Sadique, A. Temtam, K. M. Iftekharuddin Jan 2024

Domain Adaptive Federated Learning For Multi-Institution Molecular Mutation Prediction And Bias Identification, W. Farzana, M. A. Witherow, I. Longoria, M. S. Sadique, A. Temtam, K. M. Iftekharuddin

Electrical & Computer Engineering Faculty Publications

Deep learning models have shown potential in medical image analysis tasks. However, training a generalized deep learning model requires huge amounts of patient data that is usually gathered from multiple institutions which may raise privacy concerns. Federated learning (FL) provides an alternative to sharing data across institutions. Nonetheless, FL is susceptible to a few challenges including inversion attacks on model weights, heterogenous data distributions, and bias. This study addresses heterogeneity and bias issues for multi-institution patient data by proposing domain adaptive FL modeling using several radiomics (volume, fractal, texture) features for O6-methylguanine-DNA methyltransferase (MGMT) classification across multiple institutions. The proposed …