Open Access. Powered by Scholars. Published by Universities.®

Cancer Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Cancer Biology

Alcohol Consumption Promotes Colorectal Carcinoma Metastasis Via A Ccl5-Induced And Ampk-Pathway-Mediated Activation Of Autophagy, Haodong Zhao, Danlei Chen, Rui Cao, Shiqing Wang, Dandan Yu, Yakun Liu, Yu Jiang, Mei Xu, Jia Luo, Siying Wang Jun 2018

Alcohol Consumption Promotes Colorectal Carcinoma Metastasis Via A Ccl5-Induced And Ampk-Pathway-Mediated Activation Of Autophagy, Haodong Zhao, Danlei Chen, Rui Cao, Shiqing Wang, Dandan Yu, Yakun Liu, Yu Jiang, Mei Xu, Jia Luo, Siying Wang

Pharmacology and Nutritional Sciences Faculty Publications

There is a definite relationship between alcohol consumption and colorectal cancer (CRC) development. We investigated effect of alcohol consumption on CRC patients’ progression and prognosis by utilizing epidemiological data and found patients with alcohol consumption increased risks of tumor-node-metastasis (TNM), organ metastasis and poorer prognosis. Because their tumor tissues displayed increased expression of C-C chemokine ligand 5 (CCL5), we hypothesized CCL5 might participate in cancer progression in such patients. Ethanol increased the secretion of CCL5 in two CRC cell lines, HT29 and DLD-1. Treatment with CCL5 directly increased migratory ability of these cells, whereas neutralization or knockdown of CCL5 can …


Toward Repurposing Metformin As A Precision Anti-Cancer Therapy Using Structural Systems Pharmacology, Thomas Hart, Shihab Dider, Weiwei Han, Hua Xu, Zhongming Zhao, Lei Xie Feb 2016

Toward Repurposing Metformin As A Precision Anti-Cancer Therapy Using Structural Systems Pharmacology, Thomas Hart, Shihab Dider, Weiwei Han, Hua Xu, Zhongming Zhao, Lei Xie

Publications and Research

Metformin, a drug prescribed to treat type-2 diabetes, exhibits anti-cancer effects in a portion of patients, but the direct molecular and genetic interactions leading to this pleiotropic effect have not yet been fully explored. To repurpose metformin as a precision anti-cancer therapy, we have developed a novel structural systems pharmacology approach to elucidate metformin’s molecular basis and genetic biomarkers of action. We integrated structural proteome-scale drug target identification with network biology analysis by combining structural genomic, functional genomic, and interactomic data. Through searching the human structural proteome, we identified twenty putative metformin binding targets and their interaction models. We experimentally …


Synthesis And Evaluation Of Cytotoxic Activity Of Substituted N-(9-Oxo-9h-Xanthen-4-Yl) Benzenesulfonamides, Somayeh Motavallizadeh, Asal Fallah-Tafti, Saeedeh Maleki, Amir Nasrolahi Shirazi, Mahboobeh Pordeli, Maliheh Safavi, Sussan Kabudanian Ardestani, Shaaban Asd, Rakesh Tiwari, Donghoon Oh, Abbas Shafiee, Alireza Foroumadi, Keykavous Parang, Tahmineh Akbarzadeh Jan 2014

Synthesis And Evaluation Of Cytotoxic Activity Of Substituted N-(9-Oxo-9h-Xanthen-4-Yl) Benzenesulfonamides, Somayeh Motavallizadeh, Asal Fallah-Tafti, Saeedeh Maleki, Amir Nasrolahi Shirazi, Mahboobeh Pordeli, Maliheh Safavi, Sussan Kabudanian Ardestani, Shaaban Asd, Rakesh Tiwari, Donghoon Oh, Abbas Shafiee, Alireza Foroumadi, Keykavous Parang, Tahmineh Akbarzadeh

Pharmacy Faculty Articles and Research

Several novel N-(9-oxo-9H-xanthen-4-yl)benzenesulfonamides derivatives were prepared as potential antiproliferative agents. The in vitro antiproliferative activity of the synthesized compounds was investigated against a panel of tumor cell lines including breast cancer cell lines (MDA-MB-231, T-47D) and neuroblastoma cell line (SK-N-MC) using MTT colorimetric assay. Etoposide, a well-known anticancer drug, was used as a positive standard drug. Among synthesized compounds, 4-methoxy-N-(9-oxo-9H-xanthen-4-yl)benzenesulfonamide (5i) showed the highest antiproliferative activity against MDA-MB-231, T-47D, and SK-N-MC cells. Furthermore, pentafluoro derivatives 5a and 6a exhibited higher antiproliferative activity than doxorubicin against human leukemia cell line (CCRF-CEM) and breast adenocarcinoma (MDA-MB-468) cells. Structure-activity relationship studies revealed that …


Role Of Hypoxia And Glycolysis In The Development Of Multi-Drug Resistance In Human Tumor Cells And The Establishment Of An Orthotopic Multi-Drug Resistant Tumor Model In Nude Mice Using Hypoxic Pre-Conditioning, Lara Milane, Zhenfeng Duan, Mansoor M. Amiji Sep 2011

Role Of Hypoxia And Glycolysis In The Development Of Multi-Drug Resistance In Human Tumor Cells And The Establishment Of An Orthotopic Multi-Drug Resistant Tumor Model In Nude Mice Using Hypoxic Pre-Conditioning, Lara Milane, Zhenfeng Duan, Mansoor M. Amiji

Mansoor M. Amiji

Background The development of multi-drug resistant (MDR) cancer is a significant challenge in the clinical treatment of recurrent disease. Hypoxia is an environmental selection pressure that contributes to the development of MDR. Many cancer cells, including MDR cells, resort to glycolysis for energy acquisition. This study aimed to explore the relationship between hypoxia, glycolysis, and MDR in a panel of human breast and ovarian cancer cells. A second aim of this study was to develop an orthotopic animal model of MDR breast cancer. Methods Nucleic and basal protein was extracted from a panel of human breast and ovarian cancer cells; …


Variations In Mre11/Rad50/Nbs1 Status And Dna Damage-Induced S-Phase Arrest In The Cell Lines Of The Nci60 Panel, Kristen M. K. Garner, Alan Eastman May 2011

Variations In Mre11/Rad50/Nbs1 Status And Dna Damage-Induced S-Phase Arrest In The Cell Lines Of The Nci60 Panel, Kristen M. K. Garner, Alan Eastman

Dartmouth Scholarship

The Mre11/Rad50/Nbs1 (MRN) complex is a regulator of cell cycle checkpoints and DNA repair. Defects in MRN can lead to defective S-phase arrest when cells are damaged. Such defects may elicit sensitivity to selected drugs providing a chemical synthetic lethal interaction that could be used to target therapy to tumors with these defects. The goal of this study was to identify these defects in the NCI60 panel of cell lines and identify compounds that might elicit selective cytotoxicity.


Study Of The Structure And Function Of Cxc Chemokine Receptor 2, Hae Ryong Kwon Dec 2010

Study Of The Structure And Function Of Cxc Chemokine Receptor 2, Hae Ryong Kwon

Masters Theses

It has been shown that the amino terminus and second extracellular loop (EC2) of CXCR2 are crucial for ligand binding and receptor activation. The lack of an ionic lock motif in the third intracellular loop of CXCR2 focuses an investigation of the mechanism by which these two extracellular regions contribute to receptor recognition and activation.

The first objective of this investigation was to predict the structure of CXCR2 based on known structures of crystallized GPCRs. Rhodopsin, β2-adrenergic receptor, CXCR4 were used for homology modeling of CXCR2 structure. Highly conserved motifs found in sequence alignments of the template GPCRs were helpful …


Cip4 And Src In Promoting The Migration And Invasion Of Breast Cancers, Christina S. Pichot May 2010

Cip4 And Src In Promoting The Migration And Invasion Of Breast Cancers, Christina S. Pichot

Dissertations & Theses (Open Access)

Cellular invasion represents a critical early step in the metastatic cascade, and many proteins have been identified as part of an “invasive signature.” The non-receptor tyrosine kinase Src is commonly upregulated in breast cancers, often in conjunction with overexpression of EGFR. Signaling from this pathway stimulates cell proliferation, migration, and invasion and frequently involves proteins that regulate the cytoskeleton. My data demonstrates that inhibition of Src, using the small-molecule inhibitor dasatinib, impairs cellular migration and invasion. Furthermore, Src inhibition sensitizes the cells to the effects of the chemotherapeutic doxorubicin resulting in dramatic, synergistic inhibition of proliferation with combination treatments. The …


Ube1l Is A Retinoid Target That Triggers Pml/Rarα Degradation And Apoptosis In Acute Promyelocytic Leukemia, Sutisak Kitareewan, Ian Pitha-Rowe, David Sekula, Christopher H. Lowrey, Michael J. Nemeth, Todd R. Golub, Sarah J. Freemantle, Ethan Dmitrovsky Mar 2002

Ube1l Is A Retinoid Target That Triggers Pml/Rarα Degradation And Apoptosis In Acute Promyelocytic Leukemia, Sutisak Kitareewan, Ian Pitha-Rowe, David Sekula, Christopher H. Lowrey, Michael J. Nemeth, Todd R. Golub, Sarah J. Freemantle, Ethan Dmitrovsky

Dartmouth Scholarship

All-trans-retinoic acid (RA) treatment induces remissions in acute promyelocytic leukemia (APL) cases expressing the t(15;17) product, promyelocytic leukemia (PML)/RA receptor α (RARα). Microarray analyses previously revealed induction of UBE1L (ubiquitin-activating enzyme E1-like) after RA treatment of NB4 APL cells. We report here that this occurs within 3 h in RA-sensitive but not RA-resistant APL cells, implicating UBE1L as a direct retinoid target. A 1.3-kb fragment of the UBE1L promoter was capable of mediating transcriptional response to RA in a retinoid receptor-selective manner. PML/RARα, a repressor of RA target genes, abolished this UBE1L promoter activity. A hallmark of …